/* linalg/ptlq.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * Copyright (C) 2004 Joerg Wensch, modifications for LQ. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include "apply_givens.c" /* The purpose of this package is to speed up QR-decomposition for large matrices. Because QR-decomposition is column oriented, but GSL uses a row-oriented matrix format, there can considerable speedup obtained by computing the LQ-decomposition of the transposed matrix instead. This package provides LQ-decomposition and related algorithms. */ /* Factorise a general N x M matrix A into * * P A = L Q * * where Q is orthogonal (M x M) and L is lower triangular (N x M). * When A is rank deficient, r = rank(A) < n, then the permutation is * used to ensure that the lower n - r columns of L are zero and the first * l rows of Q form an orthonormal basis for the rows of A. * * Q is stored as a packed set of Householder transformations in the * strict upper triangular part of the input matrix. * * L is stored in the diagonal and lower triangle of the input matrix. * * P: column j of P is column k of the identity matrix, where k = * permutation->data[j] * * The full matrix for Q can be obtained as the product * * Q = Q_k .. Q_2 Q_1 * * where k = MIN(M,N) and * * Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * * v_i = [1, m(i,i+1), m(i,i+2), ... , m(i,M)] * * This storage scheme is the same as in LAPACK. See LAPACK's * dgeqpf.f for details. * */ int gsl_linalg_PTLQ_decomp (gsl_matrix * A, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm) { const size_t N = A->size1; const size_t M = A->size2; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (p->size != N) { GSL_ERROR ("permutation size must be N", GSL_EBADLEN); } else if (norm->size != N) { GSL_ERROR ("norm size must be N", GSL_EBADLEN); } else { size_t i; *signum = 1; gsl_permutation_init (p); /* set to identity */ /* Compute column norms and store in workspace */ for (i = 0; i < N; i++) { gsl_vector_view c = gsl_matrix_row (A, i); double x = gsl_blas_dnrm2 (&c.vector); gsl_vector_set (norm, i, x); } for (i = 0; i < GSL_MIN (M, N); i++) { /* Bring the column of largest norm into the pivot position */ double max_norm = gsl_vector_get(norm, i); size_t j, kmax = i; for (j = i + 1; j < N; j++) { double x = gsl_vector_get (norm, j); if (x > max_norm) { max_norm = x; kmax = j; } } if (kmax != i) { gsl_matrix_swap_rows (A, i, kmax); gsl_permutation_swap (p, i, kmax); gsl_vector_swap_elements(norm,i,kmax); (*signum) = -(*signum); } /* Compute the Householder transformation to reduce the j-th column of the matrix to a multiple of the j-th unit vector */ { gsl_vector_view c = gsl_matrix_subrow (A, i, i, M - i); double tau_i = gsl_linalg_householder_transform (&c.vector); gsl_vector_set (tau, i, tau_i); /* Apply the transformation to the remaining columns */ if (i + 1 < N) { gsl_matrix_view m = gsl_matrix_submatrix (A, i +1, i, N - (i+1), M - i); gsl_linalg_householder_mh (tau_i, &c.vector, &m.matrix); } } /* Update the norms of the remaining columns too */ if (i + 1 < M) { for (j = i + 1; j < N; j++) { double x = gsl_vector_get (norm, j); if (x > 0.0) { double y = 0; double temp= gsl_matrix_get (A, j, i) / x; if (fabs (temp) >= 1) y = 0.0; else y = x * sqrt (1 - temp * temp); /* recompute norm to prevent loss of accuracy */ if (fabs (y / x) < sqrt (20.0) * GSL_SQRT_DBL_EPSILON) { gsl_vector_view c = gsl_matrix_subrow (A, j, i + 1, M - (i + 1)); y = gsl_blas_dnrm2 (&c.vector); } gsl_vector_set (norm, j, y); } } } } return GSL_SUCCESS; } } int gsl_linalg_PTLQ_decomp2 (const gsl_matrix * A, gsl_matrix * q, gsl_matrix * r, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm) { const size_t N = A->size1; const size_t M = A->size2; if (q->size1 != M || q->size2 !=M) { GSL_ERROR ("q must be M x M", GSL_EBADLEN); } else if (r->size1 != N || r->size2 !=M) { GSL_ERROR ("r must be N x M", GSL_EBADLEN); } else if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (p->size != N) { GSL_ERROR ("permutation size must be N", GSL_EBADLEN); } else if (norm->size != N) { GSL_ERROR ("norm size must be N", GSL_EBADLEN); } gsl_matrix_memcpy (r, A); gsl_linalg_PTLQ_decomp (r, tau, p, signum, norm); /* FIXME: aliased arguments depends on behavior of unpack routine! */ gsl_linalg_LQ_unpack (r, tau, q, r); return GSL_SUCCESS; } /* Solves the system x^T A = b^T using the P^T L Q factorisation, z^T L = b^T Q^T x = P z; to obtain x. Based on SLATEC code. */ int gsl_linalg_PTLQ_solve_T (const gsl_matrix * QR, const gsl_vector * tau, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x) { if (QR->size1 != QR->size2) { GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR); } else if (QR->size2 != p->size) { GSL_ERROR ("matrix size must match permutation size", GSL_EBADLEN); } else if (QR->size2 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (QR->size1 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { gsl_vector_memcpy (x, b); gsl_linalg_PTLQ_svx_T (QR, tau, p, x); return GSL_SUCCESS; } } int gsl_linalg_PTLQ_svx_T (const gsl_matrix * LQ, const gsl_vector * tau, const gsl_permutation * p, gsl_vector * x) { if (LQ->size1 != LQ->size2) { GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR); } else if (LQ->size2 != p->size) { GSL_ERROR ("matrix size must match permutation size", GSL_EBADLEN); } else if (LQ->size1 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* compute sol = b^T Q^T */ gsl_linalg_LQ_vecQT (LQ, tau, x); /* Solve L^T x = sol, storing x inplace in sol */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x); gsl_permute_vector_inverse (p, x); return GSL_SUCCESS; } } int gsl_linalg_PTLQ_LQsolve_T (const gsl_matrix * Q, const gsl_matrix * L, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x) { if (Q->size1 != Q->size2 || L->size1 != L->size2) { return GSL_ENOTSQR; } else if (Q->size1 != p->size || Q->size1 != L->size1 || Q->size1 != b->size) { return GSL_EBADLEN; } else { /* compute b' = Q b */ gsl_blas_dgemv (CblasNoTrans, 1.0, Q, b, 0.0, x); /* Solve L^T x = b', storing x inplace */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, L, x); /* Apply permutation to solution in place */ gsl_permute_vector_inverse (p, x); return GSL_SUCCESS; } } int gsl_linalg_PTLQ_Lsolve_T (const gsl_matrix * LQ, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x) { if (LQ->size1 != LQ->size2) { GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR); } else if (LQ->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (LQ->size2 != x->size) { GSL_ERROR ("matrix size must match x size", GSL_EBADLEN); } else if (p->size != x->size) { GSL_ERROR ("permutation size must match x size", GSL_EBADLEN); } else { /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve L^T x = b, storing x inplace */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x); gsl_permute_vector_inverse (p, x); return GSL_SUCCESS; } } int gsl_linalg_PTLQ_Lsvx_T (const gsl_matrix * LQ, const gsl_permutation * p, gsl_vector * x) { if (LQ->size1 != LQ->size2) { GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR); } else if (LQ->size2 != x->size) { GSL_ERROR ("matrix size must match x size", GSL_EBADLEN); } else if (p->size != x->size) { GSL_ERROR ("permutation size must match x size", GSL_EBADLEN); } else { /* Solve L^T x = b, storing x inplace */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x); gsl_permute_vector_inverse (p, x); return GSL_SUCCESS; } } /* Update a P^T L Q factorisation for P A= L Q , A' = A + v u^T, PA' = PA + Pv u^T * P^T L' Q' = P^T LQ + v u^T * = P^T (L + (P v) u^T Q^T) Q * = P^T (L + (P v) w^T) Q * * where w = Q^T u. * * Algorithm from Golub and Van Loan, "Matrix Computations", Section * 12.5 (Updating Matrix Factorizations, Rank-One Changes) */ int gsl_linalg_PTLQ_update (gsl_matrix * Q, gsl_matrix * L, const gsl_permutation * p, const gsl_vector * v, gsl_vector * w) { if (Q->size1 != Q->size2 || L->size1 != L->size2) { return GSL_ENOTSQR; } else if (L->size1 != Q->size2 || v->size != Q->size2 || w->size != Q->size2) { return GSL_EBADLEN; } else { size_t j, k; const size_t N = Q->size1; const size_t M = Q->size2; double w0; /* Apply Given's rotations to reduce w to (|w|, 0, 0, ... , 0) J_1^T .... J_(n-1)^T w = +/- |w| e_1 simultaneously applied to L, H = J_1^T ... J^T_(n-1) L so that H is upper Hessenberg. (12.5.2) */ for (k = M - 1; k > 0; k--) { double c, s; double wk = gsl_vector_get (w, k); double wkm1 = gsl_vector_get (w, k - 1); gsl_linalg_givens (wkm1, wk, &c, &s); gsl_linalg_givens_gv (w, k - 1, k, c, s); apply_givens_lq (M, N, Q, L, k - 1, k, c, s); } w0 = gsl_vector_get (w, 0); /* Add in v w^T (Equation 12.5.3) */ for (j = 0; j < N; j++) { double lj0 = gsl_matrix_get (L, j, 0); size_t p_j = gsl_permutation_get (p, j); double vj = gsl_vector_get (v, p_j); gsl_matrix_set (L, j, 0, lj0 + w0 * vj); } /* Apply Givens transformations L' = G_(n-1)^T ... G_1^T H Equation 12.5.4 */ for (k = 1; k < N; k++) { double c, s; double diag = gsl_matrix_get (L, k - 1, k - 1); double offdiag = gsl_matrix_get (L, k - 1, k ); gsl_linalg_givens (diag, offdiag, &c, &s); apply_givens_lq (M, N, Q, L, k - 1, k, c, s); } return GSL_SUCCESS; } }