/* linalg/qrc.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * Copyright (C) 2017 Christian Krueger * Copyright (C) 2020 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman, modified by C. Krueger */ #include #include #include #include #include #include #include #include #include #include /* Factorise a general complex-valued M x N matrix A into * * A = Q R * * where Q is unitary (M x M) and R is upper triangular (M x N). * * Q is stored as a packed set of Householder transformations in the * strict lower triangular part of the input matrix. * * R is stored in the diagonal and upper triangle of the input matrix. * * The full matrix for Q can be obtained as the product * * Q = Q_k .. Q_2 Q_1 * * where k = MIN(M,N) and * * Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * * v_i = [1, m(i+1,i), m(i+2,i), ... , m(M,i)] * * This storage scheme is the same as in LAPACK. */ int gsl_linalg_complex_QR_decomp (gsl_matrix_complex * A, gsl_vector_complex * tau) { const size_t M = A->size1; const size_t N = A->size2; if (tau->size != N) { GSL_ERROR ("size of tau must be N", GSL_EBADLEN); } else { size_t i; for (i = 0; i < GSL_MIN (M, N); i++) { /* Compute the Householder transformation to reduce the j-th column of the matrix to a multiple of the j-th unit vector */ gsl_vector_complex_view c = gsl_matrix_complex_subcolumn (A, i, i, M - i); gsl_complex tau_i = gsl_linalg_complex_householder_transform (&(c.vector)); gsl_vector_complex_set (tau, i, tau_i); /* apply the transformation to the remaining columns and update the norms */ if (i + 1 < N) { gsl_matrix_complex_view m = gsl_matrix_complex_submatrix (A, i, i + 1, M - i, N - i - 1); gsl_complex tau_i_conj = gsl_complex_conjugate(tau_i); gsl_vector_complex_view work = gsl_vector_complex_subvector(tau, i + 1, N - i - 1); gsl_linalg_complex_householder_left(tau_i_conj, &(c.vector), &(m.matrix), &(work.vector)); } } return GSL_SUCCESS; } } /* Solves the system A x = b using the QR factorisation, * R x = Q^H b * * to obtain x. */ int gsl_linalg_complex_QR_solve (const gsl_matrix_complex * QR, const gsl_vector_complex * tau, const gsl_vector_complex * b, gsl_vector_complex * x) { if (QR->size1 != QR->size2) { GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR); } else if (QR->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (QR->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* copy x <- b */ gsl_vector_complex_memcpy (x, b); /* solve for x */ gsl_linalg_complex_QR_svx (QR, tau, x); return GSL_SUCCESS; } } /* Solves the system A x = b in place using the QR factorisation, * R x = Q^H b * * to obtain x. */ int gsl_linalg_complex_QR_svx (const gsl_matrix_complex * QR, const gsl_vector_complex * tau, gsl_vector_complex * x) { if (QR->size1 != QR->size2) { GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR); } else if (QR->size1 != x->size) { GSL_ERROR ("matrix size must match x/rhs size", GSL_EBADLEN); } else { /* compute rhs = Q^H b */ gsl_linalg_complex_QR_QHvec (QR, tau, x); /* solve R x = rhs, storing x in-place */ gsl_blas_ztrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x); return GSL_SUCCESS; } } /* Find the least squares solution to the overdetermined system * * A x = b * * for M >= N using the QR factorization A = Q R. */ int gsl_linalg_complex_QR_lssolve (const gsl_matrix_complex * QR, const gsl_vector_complex * tau, const gsl_vector_complex * b, gsl_vector_complex * x, gsl_vector_complex * residual) { const size_t M = QR->size1; const size_t N = QR->size2; if (M < N) { GSL_ERROR ("QR matrix must have M>=N", GSL_EBADLEN); } else if (M != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (N != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else if (M != residual->size) { GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN); } else { gsl_matrix_complex_const_view R = gsl_matrix_complex_const_submatrix (QR, 0, 0, N, N); gsl_vector_complex_view c = gsl_vector_complex_subvector(residual, 0, N); gsl_vector_complex_memcpy(residual, b); /* compute rhs = Q^H b */ gsl_linalg_complex_QR_QHvec (QR, tau, residual); /* solve R x = rhs */ gsl_vector_complex_memcpy(x, &(c.vector)); gsl_blas_ztrsv (CblasUpper, CblasNoTrans, CblasNonUnit, &(R.matrix), x); /* compute residual = b - A x = Q (Q^H b - R x) */ gsl_vector_complex_set_zero(&(c.vector)); gsl_linalg_complex_QR_Qvec(QR, tau, residual); return GSL_SUCCESS; } } /* form the product v := Q^H v from a QR factorized matrix */ int gsl_linalg_complex_QR_QHvec (const gsl_matrix_complex * QR, const gsl_vector_complex * tau, gsl_vector_complex * v) { const size_t M = QR->size1; const size_t N = QR->size2; if (tau->size != N) { GSL_ERROR ("size of tau must be N", GSL_EBADLEN); } else if (v->size != M) { GSL_ERROR ("vector size must be M", GSL_EBADLEN); } else { size_t i; /* compute Q^H v */ for (i = 0; i < GSL_MIN (M, N); i++) { gsl_vector_complex_const_view h = gsl_matrix_complex_const_subcolumn (QR, i, i, M - i); gsl_vector_complex_view w = gsl_vector_complex_subvector (v, i, M - i); gsl_complex ti = gsl_vector_complex_get (tau, i); gsl_complex ti_conj = gsl_complex_conjugate(ti); gsl_linalg_complex_householder_hv (ti_conj, &(h.vector), &(w.vector)); } return GSL_SUCCESS; } } int gsl_linalg_complex_QR_Qvec (const gsl_matrix_complex * QR, const gsl_vector_complex * tau, gsl_vector_complex * v) { const size_t M = QR->size1; const size_t N = QR->size2; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (v->size != M) { GSL_ERROR ("vector size must be M", GSL_EBADLEN); } else { size_t i; /* compute Q v */ for (i = GSL_MIN (M, N); i-- > 0;) { gsl_vector_complex_const_view c = gsl_matrix_complex_const_column (QR, i); gsl_vector_complex_const_view h = gsl_vector_complex_const_subvector (&(c.vector), i, M - i); gsl_vector_complex_view w = gsl_vector_complex_subvector (v, i, M - i); gsl_complex ti = gsl_vector_complex_get (tau, i); /* we do not need the conjugate of ti here */ gsl_linalg_complex_householder_hv (ti, &h.vector, &w.vector); } return GSL_SUCCESS; } } /* form the unitary matrix Q from the packed QR matrix */ int gsl_linalg_complex_QR_unpack (const gsl_matrix_complex * QR, const gsl_vector_complex * tau, gsl_matrix_complex * Q, gsl_matrix_complex * R) { const size_t M = QR->size1; const size_t N = QR->size2; if (Q->size1 != M || Q->size2 != M) { GSL_ERROR ("Q matrix must be M x M", GSL_ENOTSQR); } else if (R->size1 != M || R->size2 != N) { GSL_ERROR ("R matrix must be M x N", GSL_ENOTSQR); } else if (tau->size != N) { GSL_ERROR ("size of tau must be N", GSL_EBADLEN); } else { size_t i, j; /* initialize Q to the identity */ gsl_matrix_complex_set_identity (Q); for (i = GSL_MIN (M, N); i-- > 0;) { gsl_vector_complex_const_view c = gsl_matrix_complex_const_column (QR, i); gsl_vector_complex_const_view h = gsl_vector_complex_const_subvector (&c.vector, i, M - i); gsl_matrix_complex_view m = gsl_matrix_complex_submatrix (Q, i, i, M - i, M - i); gsl_complex ti = gsl_vector_complex_get (tau, i); gsl_vector_complex_view work = gsl_matrix_complex_subcolumn(R, 0, 0, M - i); /* we do not need the conjugate of ti here */ gsl_linalg_complex_householder_left (ti, &h.vector, &m.matrix, &work.vector); } /* form the right triangular matrix R from a packed QR matrix */ for (i = 0; i < M; i++) { for (j = 0; j < i && j < N; j++) gsl_matrix_complex_set (R, i, j, GSL_COMPLEX_ZERO); for (j = i; j < N; j++) gsl_matrix_complex_set (R, i, j, gsl_matrix_complex_get (QR, i, j)); } return GSL_SUCCESS; } }