/* matrix/swap_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION (gsl_matrix, swap_rows) (TYPE (gsl_matrix) * m, const size_t i, const size_t j) { const size_t size1 = m->size1; const size_t size2 = m->size2; if (i >= size1) { GSL_ERROR ("first row index is out of range", GSL_EINVAL); } if (j >= size1) { GSL_ERROR ("second row index is out of range", GSL_EINVAL); } if (i != j) { ATOMIC *row1 = m->data + MULTIPLICITY * i * m->tda; ATOMIC *row2 = m->data + MULTIPLICITY * j * m->tda; size_t k; for (k = 0; k < MULTIPLICITY * size2; k++) { ATOMIC tmp = row1[k] ; row1[k] = row2[k] ; row2[k] = tmp ; } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, swap_columns) (TYPE (gsl_matrix) * m, const size_t i, const size_t j) { const size_t size1 = m->size1; const size_t size2 = m->size2; if (i >= size2) { GSL_ERROR ("first column index is out of range", GSL_EINVAL); } if (j >= size2) { GSL_ERROR ("second column index is out of range", GSL_EINVAL); } if (i != j) { ATOMIC *col1 = m->data + MULTIPLICITY * i; ATOMIC *col2 = m->data + MULTIPLICITY * j; size_t p; for (p = 0; p < size1; p++) { size_t k; size_t n = p * MULTIPLICITY * m->tda; for (k = 0; k < MULTIPLICITY; k++) { ATOMIC tmp = col1[n+k] ; col1[n+k] = col2[n+k] ; col2[n+k] = tmp ; } } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, swap_rowcol) (TYPE (gsl_matrix) * m, const size_t i, const size_t j) { const size_t size1 = m->size1; const size_t size2 = m->size2; if (size1 != size2) { GSL_ERROR ("matrix must be square to swap row and column", GSL_ENOTSQR); } if (i >= size1) { GSL_ERROR ("row index is out of range", GSL_EINVAL); } if (j >= size2) { GSL_ERROR ("column index is out of range", GSL_EINVAL); } { ATOMIC *row = m->data + MULTIPLICITY * i * m->tda; ATOMIC *col = m->data + MULTIPLICITY * j; size_t p; for (p = 0; p < size1; p++) { size_t k; size_t r = p * MULTIPLICITY; size_t c = p * MULTIPLICITY * m->tda; for (k = 0; k < MULTIPLICITY; k++) { ATOMIC tmp = col[c+k] ; col[c+k] = row[r+k] ; row[r+k] = tmp ; } } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, transpose) (TYPE (gsl_matrix) * m) { const size_t size1 = m->size1; const size_t size2 = m->size2; size_t i, j, k; if (size1 != size2) { GSL_ERROR ("matrix must be square to take transpose", GSL_ENOTSQR); } for (i = 0; i < size1; i++) { for (j = i + 1 ; j < size2 ; j++) { for (k = 0; k < MULTIPLICITY; k++) { size_t e1 = (i * m->tda + j) * MULTIPLICITY + k ; size_t e2 = (j * m->tda + i) * MULTIPLICITY + k ; { ATOMIC tmp = m->data[e1] ; m->data[e1] = m->data[e2] ; m->data[e2] = tmp ; } } } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, transpose_memcpy) (TYPE (gsl_matrix) * dest, const TYPE (gsl_matrix) * src) { const size_t src_size1 = src->size1; const size_t src_size2 = src->size2; const size_t dest_size1 = dest->size1; const size_t dest_size2 = dest->size2; size_t i; if (dest_size2 != src_size1 || dest_size1 != src_size2) { GSL_ERROR ("dimensions of dest matrix must be transpose of src matrix", GSL_EBADLEN); } #if defined(BASE_DOUBLE) || defined(BASE_FLOAT) || defined(BASE_GSL_COMPLEX) || defined(BASE_GSL_COMPLEX_FLOAT) for (i = 0; i < src_size1; ++i) { VIEW (gsl_vector, const_view) a = FUNCTION (gsl_matrix, const_row) (src, i); VIEW (gsl_vector, view) b = FUNCTION (gsl_matrix, column) (dest, i); #if defined(BASE_DOUBLE) gsl_blas_dcopy(&a.vector, &b.vector); #elif defined(BASE_FLOAT) gsl_blas_scopy(&a.vector, &b.vector); #elif defined(BASE_GSL_COMPLEX) gsl_blas_zcopy(&a.vector, &b.vector); #elif defined(BASE_GSL_COMPLEX_FLOAT) gsl_blas_ccopy(&a.vector, &b.vector); #endif } #else for (i = 0; i < dest_size1; i++) { size_t j, k; for (j = 0 ; j < dest_size2; j++) { for (k = 0; k < MULTIPLICITY; k++) { size_t e1 = (i * dest->tda + j) * MULTIPLICITY + k ; size_t e2 = (j * src->tda + i) * MULTIPLICITY + k ; dest->data[e1] = src->data[e2] ; } } } #endif return GSL_SUCCESS; } int FUNCTION (gsl_matrix, transpose_tricpy) (CBLAS_UPLO_t Uplo_src, CBLAS_DIAG_t Diag, TYPE (gsl_matrix) * dest, const TYPE (gsl_matrix) * src) { const size_t M = src->size1; const size_t N = src->size2; const size_t K = GSL_MIN(M, N); size_t i; if (M != dest->size2 || N != dest->size1) { GSL_ERROR ("matrix sizes are different", GSL_EBADLEN); } #if defined(BASE_DOUBLE) || defined(BASE_FLOAT) || defined(BASE_GSL_COMPLEX) || defined(BASE_GSL_COMPLEX_FLOAT) if (Uplo_src == CblasLower) { for (i = 1; i < K; i++) { VIEW (gsl_vector, const_view) a = FUNCTION (gsl_matrix, const_subrow) (src, i, 0, i); VIEW (gsl_vector, view) b = FUNCTION (gsl_matrix, subcolumn) (dest, i, 0, i); #if defined(BASE_DOUBLE) gsl_blas_dcopy(&a.vector, &b.vector); #elif defined(BASE_FLOAT) gsl_blas_scopy(&a.vector, &b.vector); #elif defined(BASE_GSL_COMPLEX) gsl_blas_zcopy(&a.vector, &b.vector); #elif defined(BASE_GSL_COMPLEX_FLOAT) gsl_blas_ccopy(&a.vector, &b.vector); #endif } } else if (Uplo_src == CblasUpper) { for (i = 0; i < K - 1; i++) { VIEW (gsl_vector, const_view) a = FUNCTION (gsl_matrix, const_subrow) (src, i, i + 1, K - i - 1); VIEW (gsl_vector, view) b = FUNCTION (gsl_matrix, subcolumn) (dest, i, i + 1, K - i - 1); #if defined(BASE_DOUBLE) gsl_blas_dcopy(&a.vector, &b.vector); #elif defined(BASE_FLOAT) gsl_blas_scopy(&a.vector, &b.vector); #elif defined(BASE_GSL_COMPLEX) gsl_blas_zcopy(&a.vector, &b.vector); #elif defined(BASE_GSL_COMPLEX_FLOAT) gsl_blas_ccopy(&a.vector, &b.vector); #endif } } if (Diag == CblasNonUnit) { VIEW (gsl_vector, const_view) a = FUNCTION (gsl_matrix, const_diagonal) (src); VIEW (gsl_vector, view) b = FUNCTION (gsl_matrix, diagonal) (dest); #if defined(BASE_DOUBLE) gsl_blas_dcopy(&a.vector, &b.vector); #elif defined(BASE_FLOAT) gsl_blas_scopy(&a.vector, &b.vector); #elif defined(BASE_GSL_COMPLEX) gsl_blas_zcopy(&a.vector, &b.vector); #elif defined(BASE_GSL_COMPLEX_FLOAT) gsl_blas_ccopy(&a.vector, &b.vector); #endif } #else { const size_t src_tda = src->tda ; const size_t dest_tda = dest->tda ; size_t j, k; if (Uplo_src == CblasLower) { /* copy lower triangle of src to upper triangle of dest */ for (i = 0; i < K; i++) { for (j = 0; j < i; j++) { for (k = 0; k < MULTIPLICITY; k++) { size_t e1 = (j * dest_tda + i) * MULTIPLICITY + k ; size_t e2 = (i * src_tda + j) * MULTIPLICITY + k ; dest->data[e1] = src->data[e2]; } } } } else if (Uplo_src == CblasUpper) { /* copy upper triangle of src to lower triangle of dest */ for (i = 0; i < K; i++) { for (j = i + 1; j < K; j++) { for (k = 0; k < MULTIPLICITY; k++) { size_t e1 = (j * dest_tda + i) * MULTIPLICITY + k ; size_t e2 = (i * src_tda + j) * MULTIPLICITY + k ; dest->data[e1] = src->data[e2]; } } } } else { GSL_ERROR ("invalid Uplo_src parameter", GSL_EINVAL); } if (Diag == CblasNonUnit) { for (i = 0; i < K; i++) { for (k = 0; k < MULTIPLICITY; k++) { size_t e1 = (i * dest_tda + i) * MULTIPLICITY + k ; size_t e2 = (i * src_tda + i) * MULTIPLICITY + k ; dest->data[e1] = src->data[e2]; } } } } #endif return GSL_SUCCESS; }