/* multifit/lmniel.c * * Copyright (C) 2014 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #define SCALE 0 /* * This module contains an implementation of the Levenberg-Marquardt * algorithm for nonlinear optimization problems. This implementation * closely follows the following works: * * [1] H. B. Nielsen, K. Madsen, Introduction to Optimization and * Data Fitting, Informatics and Mathematical Modeling, * Technical University of Denmark (DTU), 2010. */ typedef struct { gsl_matrix *A; /* J^T J */ gsl_matrix *A_copy; /* copy of J^T J */ gsl_matrix *J; /* Jacobian J(x) */ gsl_vector *diag; /* D = diag(J^T J) */ gsl_vector *rhs; /* rhs vector = -g = -J^T f */ gsl_vector *x_trial; /* trial parameter vector */ gsl_vector *f_trial; /* trial function vector */ gsl_vector *work; /* workspace length p */ long nu; /* nu */ double mu; /* LM damping parameter mu */ double tau; /* initial scale factor for mu */ } lmniel_state_t; #include "lmmisc.c" #define LM_ONE_THIRD (0.333333333333333) static int lmniel_alloc (void *vstate, const size_t n, const size_t p); static void lmniel_free(void *vstate); static int lmniel_set(void *vstate, const gsl_vector * swts, gsl_multifit_function_fdf *fdf, gsl_vector *x, gsl_vector *f, gsl_vector *dx); static int lmniel_iterate(void *vstate, const gsl_vector *swts, gsl_multifit_function_fdf *fdf, gsl_vector *x, gsl_vector *f, gsl_vector *dx); static int lmniel_alloc (void *vstate, const size_t n, const size_t p) { lmniel_state_t *state = (lmniel_state_t *) vstate; state->A = gsl_matrix_alloc(p, p); if (state->A == NULL) { GSL_ERROR ("failed to allocate space for A", GSL_ENOMEM); } state->J = gsl_matrix_alloc(n, p); if (state->J == NULL) { GSL_ERROR ("failed to allocate space for J", GSL_ENOMEM); } state->diag = gsl_vector_alloc(p); if (state->diag == NULL) { GSL_ERROR ("failed to allocate space for diag", GSL_ENOMEM); } state->rhs = gsl_vector_alloc(p); if (state->rhs == NULL) { GSL_ERROR ("failed to allocate space for rhs", GSL_ENOMEM); } state->work = gsl_vector_alloc(p); if (state->work == NULL) { GSL_ERROR ("failed to allocate space for work", GSL_ENOMEM); } state->A_copy = gsl_matrix_alloc(p, p); if (state->A_copy == NULL) { GSL_ERROR ("failed to allocate space for A_copy", GSL_ENOMEM); } state->x_trial = gsl_vector_alloc(p); if (state->x_trial == NULL) { GSL_ERROR ("failed to allocate space for x_trial", GSL_ENOMEM); } state->f_trial = gsl_vector_alloc(n); if (state->f_trial == NULL) { GSL_ERROR ("failed to allocate space for f_trial", GSL_ENOMEM); } state->tau = 1.0e-3; return GSL_SUCCESS; } /* lmniel_alloc() */ static void lmniel_free(void *vstate) { lmniel_state_t *state = (lmniel_state_t *) vstate; if (state->A) gsl_matrix_free(state->A); if (state->J) gsl_matrix_free(state->J); if (state->diag) gsl_vector_free(state->diag); if (state->rhs) gsl_vector_free(state->rhs); if (state->work) gsl_vector_free(state->work); if (state->A_copy) gsl_matrix_free(state->A_copy); if (state->x_trial) gsl_vector_free(state->x_trial); if (state->f_trial) gsl_vector_free(state->f_trial); } /* lmniel_free() */ static int lmniel_set(void *vstate, const gsl_vector *swts, gsl_multifit_function_fdf *fdf, gsl_vector *x, gsl_vector *f, gsl_vector *dx) { int status; lmniel_state_t *state = (lmniel_state_t *) vstate; const size_t p = x->size; size_t i; /* initialize counters for function and Jacobian evaluations */ fdf->nevalf = 0; fdf->nevaldf = 0; /* evaluate function and Jacobian at x and apply weight transform */ status = gsl_multifit_eval_wf(fdf, x, swts, f); if (status) return status; if (fdf->df) status = gsl_multifit_eval_wdf(fdf, x, swts, state->J); else status = gsl_multifit_fdfsolver_dif_df(x, swts, fdf, f, state->J); if (status) return status; /* compute rhs = -J^T f */ gsl_blas_dgemv(CblasTrans, -1.0, state->J, f, 0.0, state->rhs); #if SCALE gsl_vector_set_zero(state->diag); #else gsl_vector_set_all(state->diag, 1.0); #endif /* set default parameters */ state->nu = 2; #if SCALE state->mu = state->tau; #else /* compute mu_0 = tau * max(diag(J^T J)) */ state->mu = -1.0; for (i = 0; i < p; ++i) { gsl_vector_view c = gsl_matrix_column(state->J, i); double result; /* (J^T J)_{ii} */ gsl_blas_ddot(&c.vector, &c.vector, &result); state->mu = GSL_MAX(state->mu, result); } state->mu *= state->tau; #endif return GSL_SUCCESS; } /* lmniel_set() */ /* lmniel_iterate() This function performs 1 iteration of the LM algorithm 6.18 from [1]. The algorithm is slightly modified to loop until we find an acceptable step dx, in order to guarantee that each function call contains a new input vector x. Args: vstate - lm workspace swts - data weights (NULL if unweighted) fdf - function and Jacobian pointers x - on input, current parameter vector on output, new parameter vector x + dx f - on input, f(x) on output, f(x + dx) dx - (output only) parameter step vector Notes: 1) On input, the following must be initialized in state: nu, mu, rhs, J 2) On output, the following are updated with the current iterates: nu, mu, rhs, J rhs needs to be set on each output, so that lmniel_gradient supplies the correct g = J^T f */ static int lmniel_iterate(void *vstate, const gsl_vector *swts, gsl_multifit_function_fdf *fdf, gsl_vector *x, gsl_vector *f, gsl_vector *dx) { int status; lmniel_state_t *state = (lmniel_state_t *) vstate; gsl_matrix *J = state->J; /* Jacobian J(x) */ gsl_matrix *A = state->A; /* J^T J */ gsl_vector *rhs = state->rhs; /* -g = -J^T f */ gsl_vector *x_trial = state->x_trial; /* trial x + dx */ gsl_vector *f_trial = state->f_trial; /* trial f(x + dx) */ gsl_vector *diag = state->diag; /* diag(D) */ double dF; /* F(x) - F(x + dx) */ double dL; /* L(0) - L(dx) */ int foundstep = 0; /* found step dx */ /* compute A = J^T J */ status = gsl_blas_dsyrk(CblasLower, CblasTrans, 1.0, J, 0.0, A); if (status) return status; /* copy lower triangle to upper */ gsl_matrix_transpose_tricpy(CblasLower, CblasUnit, A, A); #if SCALE lmniel_update_diag(J, diag); #endif /* loop until we find an acceptable step dx */ while (!foundstep) { /* solve (A + mu*I) dx = g */ status = lmniel_calc_dx(state->mu, A, rhs, dx, state); if (status) return status; /* compute x_trial = x + dx */ lmniel_trial_step(x, dx, x_trial); /* compute f(x + dx) */ status = gsl_multifit_eval_wf(fdf, x_trial, swts, f_trial); if (status) return status; /* compute dF = F(x) - F(x + dx) */ dF = lmniel_calc_dF(f, f_trial); /* compute dL = L(0) - L(dx) = dx^T (mu*dx - g) */ dL = lmniel_calc_dL(state->mu, diag, dx, rhs); /* check that rho = dF/dL > 0 */ if ((dL > 0.0) && (dF >= 0.0)) { /* reduction in error, step acceptable */ double tmp; /* update LM parameter mu */ tmp = 2.0 * (dF / dL) - 1.0; tmp = 1.0 - tmp*tmp*tmp; state->mu *= GSL_MAX(LM_ONE_THIRD, tmp); state->nu = 2; /* compute J <- J(x + dx) */ if (fdf->df) status = gsl_multifit_eval_wdf(fdf, x_trial, swts, J); else status = gsl_multifit_fdfsolver_dif_df(x_trial, swts, fdf, f_trial, J); if (status) return status; /* update x <- x + dx */ gsl_vector_memcpy(x, x_trial); /* update f <- f(x + dx) */ gsl_vector_memcpy(f, f_trial); /* compute new rhs = -J^T f */ gsl_blas_dgemv(CblasTrans, -1.0, J, f, 0.0, rhs); foundstep = 1; } else { long nu2; /* step did not reduce error, reject step */ state->mu *= (double) state->nu; nu2 = state->nu << 1; /* 2*nu */ if (nu2 <= state->nu) { gsl_vector_view d = gsl_matrix_diagonal(A); /* * nu has wrapped around / overflown, reset mu and nu * to original values and break to force another iteration */ /*GSL_ERROR("nu parameter has overflown", GSL_EOVRFLW);*/ state->nu = 2; state->mu = state->tau * gsl_vector_max(&d.vector); break; } state->nu = nu2; } } /* while (!foundstep) */ return GSL_SUCCESS; } /* lmniel_iterate() */ static int lmniel_gradient(void *vstate, gsl_vector * g) { lmniel_state_t *state = (lmniel_state_t *) vstate; gsl_vector_memcpy(g, state->rhs); gsl_vector_scale(g, -1.0); return GSL_SUCCESS; } static int lmniel_jac(void *vstate, gsl_matrix * J) { lmniel_state_t *state = (lmniel_state_t *) vstate; int s = gsl_matrix_memcpy(J, state->J); return s; } static const gsl_multifit_fdfsolver_type lmniel_type = { "lmniel", sizeof(lmniel_state_t), &lmniel_alloc, &lmniel_set, &lmniel_iterate, &lmniel_gradient, &lmniel_jac, &lmniel_free }; const gsl_multifit_fdfsolver_type *gsl_multifit_fdfsolver_lmniel = &lmniel_type;