#define helical_N 3 #define helical_P 3 #define helical_NTRIES 4 static double helical_x0[helical_P] = { -1.0, 0.0, 0.0 }; static double helical_x[helical_P] = { 1.0, 0.0, 0.0 }; static double helical_epsrel = 1.0e-12; static void helical_checksol(const double x[], const double sumsq, const double epsrel, const char *sname, const char *pname) { size_t i; const double sumsq_exact = 0.0; gsl_test_rel(sumsq, sumsq_exact, epsrel, "%s/%s sumsq", sname, pname); for (i = 0; i < helical_P; ++i) { gsl_test_rel(x[i], helical_x[i], epsrel, "%s/%s i=%zu", sname, pname, i); } } static int helical_f (const gsl_vector * x, void *params, gsl_vector * f) { double x1 = gsl_vector_get(x, 0); double x2 = gsl_vector_get(x, 1); double x3 = gsl_vector_get(x, 2); double theta = (x1 >= 0.0) ? 0.0 : 5.0; double nx = gsl_hypot(x1, x2); gsl_vector_set(f, 0, 10.0 * (x3 - 5.0/M_PI*atan(x2 / x1) - theta)); gsl_vector_set(f, 1, 10.0*(nx - 1.0)); gsl_vector_set(f, 2, x3); return GSL_SUCCESS; } static int helical_df (const gsl_vector * x, void *params, gsl_matrix * J) { double x1 = gsl_vector_get(x, 0); double x2 = gsl_vector_get(x, 1); double nx = gsl_hypot(x1, x2); double nx_sq = nx * nx; double term1 = 50.0 / (M_PI * nx_sq); double term2 = 10.0 / nx; gsl_matrix_set(J, 0, 0, term1*x2); gsl_matrix_set(J, 0, 1, -term1*x1); gsl_matrix_set(J, 0, 2, 10.0); gsl_matrix_set(J, 1, 0, term2*x1); gsl_matrix_set(J, 1, 1, term2*x2); gsl_matrix_set(J, 1, 2, 0.0); gsl_matrix_set(J, 2, 0, 0.0); gsl_matrix_set(J, 2, 1, 0.0); gsl_matrix_set(J, 2, 2, 1.0); return GSL_SUCCESS; } static gsl_multifit_function_fdf helical_func = { &helical_f, &helical_df, NULL, helical_N, helical_P, NULL, 0, 0 }; static test_fdf_problem helical_problem = { "helical", helical_x0, NULL, &helical_epsrel, helical_NTRIES, &helical_checksol, &helical_func };