/* * test_shaw.c * * Test L-curve (Tikhonov) regression routines using Shaw * problem. See example 1.10 of * * [1] R.C. Aster, B. Borchers and C. H. Thurber, * Parameter Estimation and Inverse Problems (2nd ed), 2012. */ #include /* alternate (and inefficient) method of computing G(lambda) */ static double shaw_gcv_G(const double lambda, const gsl_matrix * X, const gsl_vector * y, gsl_multifit_linear_workspace * work) { const size_t n = X->size1; const size_t p = X->size2; gsl_matrix * XTX = gsl_matrix_alloc(p, p); gsl_matrix * XI = gsl_matrix_alloc(p, n); gsl_matrix * XXI = gsl_matrix_alloc(n, n); gsl_vector * c = gsl_vector_alloc(p); gsl_vector_view d; double rnorm, snorm; double term1, term2, G; size_t i; /* compute regularized solution with this lambda */ gsl_multifit_linear_solve(lambda, X, y, c, &rnorm, &snorm, work); /* compute X^T X */ gsl_blas_dsyrk(CblasLower, CblasTrans, 1.0, X, 0.0, XTX); /* add lambda*I */ d = gsl_matrix_diagonal(XTX); gsl_vector_add_constant(&d.vector, lambda * lambda); /* invert (X^T X + lambda*I) */ gsl_linalg_cholesky_decomp1(XTX); gsl_linalg_cholesky_invert(XTX); gsl_matrix_transpose_tricpy(CblasLower, CblasUnit, XTX, XTX); /* XI = (X^T X + lambda*I)^{-1} X^T */ gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, XTX, X, 0.0, XI); /* XXI = X (X^T X + lambda*I)^{-1} X^T */ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, X, XI, 0.0, XXI); /* compute: term1 = Tr(I - X XI) */ term1 = 0.0; for (i = 0; i < n; ++i) { double *Ai = gsl_matrix_ptr(XXI, i, i); term1 += 1.0 - (*Ai); } gsl_matrix_free(XTX); gsl_matrix_free(XI); gsl_matrix_free(XXI); gsl_vector_free(c); term2 = rnorm / term1; return term2 * term2;; } /* construct design matrix and rhs vector for Shaw problem */ static int shaw_system(gsl_matrix * X, gsl_vector * y) { int s = GSL_SUCCESS; const size_t n = X->size1; const size_t p = X->size2; const double dtheta = M_PI / (double) p; size_t i, j; gsl_vector *m = gsl_vector_alloc(p); /* build the design matrix */ for (i = 0; i < n; ++i) { double si = (i + 0.5) * M_PI / n - M_PI / 2.0; double csi = cos(si); double sni = sin(si); for (j = 0; j < p; ++j) { double thetaj = (j + 0.5) * M_PI / p - M_PI / 2.0; double term1 = csi + cos(thetaj); double term2 = gsl_sf_sinc(sni + sin(thetaj)); double Xij = term1 * term1 * term2 * term2 * dtheta; gsl_matrix_set(X, i, j, Xij); } } /* construct coefficient vector */ { const double a1 = 2.0; const double a2 = 1.0; const double c1 = 6.0; const double c2 = 2.0; const double t1 = 0.8; const double t2 = -0.5; for (j = 0; j < p; ++j) { double tj = -M_PI / 2.0 + (j + 0.5) * dtheta; double mj = a1 * exp(-c1 * (tj - t1) * (tj - t1)) + a2 * exp(-c2 * (tj - t2) * (tj - t2)); gsl_vector_set(m, j, mj); } } /* construct rhs vector */ gsl_blas_dgemv(CblasNoTrans, 1.0, X, m, 0.0, y); gsl_vector_free(m); return s; } static int test_shaw_system_l(gsl_rng *rng_p, const size_t n, const size_t p, const double lambda_expected, gsl_vector *rhs) { const size_t npoints = 1000; /* number of points on L-curve */ const double tol1 = 1.0e-12; const double tol2 = 1.0e-9; const double tol3 = 1.0e-5; gsl_vector * reg_param = gsl_vector_alloc(npoints); gsl_vector * rho = gsl_vector_alloc(npoints); gsl_vector * eta = gsl_vector_alloc(npoints); gsl_matrix * X = gsl_matrix_alloc(n, p); gsl_matrix * cov = gsl_matrix_alloc(p, p); gsl_vector * c = gsl_vector_alloc(p); gsl_vector * ytmp = gsl_vector_alloc(n); gsl_vector * y; gsl_vector * r = gsl_vector_alloc(n); gsl_multifit_linear_workspace * work = gsl_multifit_linear_alloc (n, p); size_t reg_idx, i; double lambda, rnorm, snorm; /* build design matrix */ shaw_system(X, ytmp); if (rhs) y = rhs; else { y = ytmp; /* add random noise to exact rhs vector */ test_random_vector_noise(rng_p, y); } /* SVD decomposition */ gsl_multifit_linear_svd(X, work); /* calculate L-curve */ gsl_multifit_linear_lcurve(y, reg_param, rho, eta, work); /* test rho and eta vectors */ for (i = 0; i < npoints; ++i) { double rhoi = gsl_vector_get(rho, i); double etai = gsl_vector_get(eta, i); double lami = gsl_vector_get(reg_param, i); /* solve regularized system and check for consistent rho/eta values */ gsl_multifit_linear_solve(lami, X, y, c, &rnorm, &snorm, work); gsl_test_rel(rhoi, rnorm, tol3, "shaw rho n=%zu p=%zu lambda=%e", n, p, lami); gsl_test_rel(etai, snorm, tol1, "shaw eta n=%zu p=%zu lambda=%e", n, p, lami); } /* calculate corner of L-curve */ gsl_multifit_linear_lcorner(rho, eta, ®_idx); lambda = gsl_vector_get(reg_param, reg_idx); /* test against known lambda value if given */ if (lambda_expected > 0.0) { gsl_test_rel(lambda, lambda_expected, tol1, "shaw: n=%zu p=%zu L-curve corner lambda", n, p); } /* compute regularized solution with optimal lambda */ gsl_multifit_linear_solve(lambda, X, y, c, &rnorm, &snorm, work); /* compute residual norm ||y - X c|| */ gsl_vector_memcpy(r, y); gsl_blas_dgemv(CblasNoTrans, 1.0, X, c, -1.0, r); /* test rnorm value */ gsl_test_rel(rnorm, gsl_blas_dnrm2(r), tol2, "shaw: n=%zu p=%zu rnorm", n, p); /* test snorm value */ gsl_test_rel(snorm, gsl_blas_dnrm2(c), tol2, "shaw: n=%zu p=%zu snorm", n, p); gsl_matrix_free(X); gsl_matrix_free(cov); gsl_vector_free(reg_param); gsl_vector_free(rho); gsl_vector_free(eta); gsl_vector_free(r); gsl_vector_free(c); gsl_vector_free(ytmp); gsl_multifit_linear_free(work); return 0; } /* test_shaw_system_l() */ static int test_shaw_system_gcv(gsl_rng *rng_p, const size_t n, const size_t p, const double lambda_expected, gsl_vector *rhs) { const size_t npoints = 200; /* number of points on L-curve */ const double tol1 = 1.0e-12; const double tol2 = 1.4e-10; const double tol3 = 1.0e-5; gsl_vector * reg_param = gsl_vector_alloc(npoints); gsl_vector * G = gsl_vector_alloc(npoints); gsl_matrix * X = gsl_matrix_alloc(n, p); gsl_matrix * cov = gsl_matrix_alloc(p, p); gsl_vector * c = gsl_vector_alloc(p); gsl_vector * ytmp = gsl_vector_alloc(n); gsl_vector * y; gsl_vector * r = gsl_vector_alloc(n); gsl_multifit_linear_workspace * work = gsl_multifit_linear_alloc (n, p); size_t reg_idx, i; double lambda, rnorm, snorm, G_lambda; /* build design matrix */ shaw_system(X, ytmp); if (rhs) y = rhs; else { y = ytmp; /* add random noise to exact rhs vector */ test_random_vector_noise(rng_p, y); } /* SVD decomposition */ gsl_multifit_linear_svd(X, work); /* calculate GCV curve */ gsl_multifit_linear_gcv(y, reg_param, G, &lambda, &G_lambda, work); /* test G vector */ for (i = 0; i < npoints; ++i) { double lami = gsl_vector_get(reg_param, i); if (lami > 1.0e-5) { /* test unreliable for small lambda */ double Gi = gsl_vector_get(G, i); double Gi_expected = shaw_gcv_G(lami, X, y, work); gsl_test_rel(Gi, Gi_expected, tol3, "shaw[%zu,%zu] gcv G i=%zu lambda=%e", n, p, i, lami); } } /* test against known lambda value if given */ if (lambda_expected > 0.0) { gsl_test_rel(lambda, lambda_expected, tol2, "shaw gcv: n=%zu p=%zu lambda", n, p); } /* compute regularized solution with optimal lambda */ gsl_multifit_linear_solve(lambda, X, y, c, &rnorm, &snorm, work); /* compute residual norm ||y - X c|| */ gsl_vector_memcpy(r, y); gsl_blas_dgemv(CblasNoTrans, 1.0, X, c, -1.0, r); /* test rnorm value */ gsl_test_rel(rnorm, gsl_blas_dnrm2(r), tol2, "shaw gcv: n=%zu p=%zu rnorm", n, p); /* test snorm value */ gsl_test_rel(snorm, gsl_blas_dnrm2(c), tol2, "shaw gcv: n=%zu p=%zu snorm", n, p); gsl_matrix_free(X); gsl_matrix_free(cov); gsl_vector_free(reg_param); gsl_vector_free(G); gsl_vector_free(r); gsl_vector_free(c); gsl_vector_free(ytmp); gsl_multifit_linear_free(work); return 0; } /* test_shaw_system_gcv() */ void test_shaw(void) { gsl_rng * r = gsl_rng_alloc(gsl_rng_default); { double shaw20_y[] = { 8.7547455124379323e-04, 5.4996835885761936e-04, 1.7527999407005367e-06, 1.9552372913117047e-03, 1.4411645433785081e-02, 5.2800013336393704e-02, 1.3609152023257112e-01, 2.7203484587635818e-01, 4.3752225136193390e-01, 5.7547667319875240e-01, 6.2445052213539942e-01, 5.6252658286441348e-01, 4.2322239923561566e-01, 2.6768469219560631e-01, 1.4337901162734543e-01, 6.5614569346074361e-02, 2.6013851831752945e-02, 9.2336933089481269e-03, 3.2269066658993694e-03, 1.3999201459261811e-03 }; gsl_vector_view rhs = gsl_vector_view_array(shaw20_y, 20); /* lambda and rhs values from [1] */ test_shaw_system_l(r, 20, 20, 5.793190958069266e-06, &rhs.vector); test_shaw_system_gcv(r, 20, 20, 1.24921780949051038e-05, &rhs.vector); } { size_t n, p; for (n = 10; n <= 50; n += 2) { for (p = n - 6; p <= n; p += 2) test_shaw_system_l(r, n, p, -1.0, NULL); } } gsl_rng_free(r); } /* test_shaw() */