/* multilarge_nlinear/common.c * * Copyright (C) 2015, 2016 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static double scaled_enorm (const gsl_vector * d, const gsl_vector * f); static void scaled_addition (const double alpha, const gsl_vector * x, const double beta, const gsl_vector * y, gsl_vector * z); static double quadratic_preduction(const gsl_multilarge_nlinear_trust_state * trust_state, const gsl_vector * dx, gsl_vector * work); /* compute || diag(d) f || */ static double scaled_enorm (const gsl_vector * d, const gsl_vector * f) { double e2 = 0; size_t i, n = f->size; for (i = 0; i < n; i++) { double fi = gsl_vector_get (f, i); double di = gsl_vector_get (d, i); double u = di * fi; e2 += u * u; } return sqrt (e2); } /* compute z = alpha*x + beta*y */ static void scaled_addition (const double alpha, const gsl_vector * x, const double beta, const gsl_vector * y, gsl_vector * z) { const size_t N = z->size; size_t i; for (i = 0; i < N; i++) { double xi = gsl_vector_get (x, i); double yi = gsl_vector_get (y, i); gsl_vector_set (z, i, alpha * xi + beta * yi); } } /* quadratic_preduction() Calculate predicted reduction based on standard quadratic model: m_k(dx) = Phi(x_k) + dx' g + 1/2 dx' B_k dx predicted_reduction = m_k(0) - m_k(dx) = -2 g^T dx / ||f||^2 - ( ||J*dx|| / ||f|| )^2 = -2 fhat . beta - ||beta||^2 where: beta = J*dx / ||f|| Inputs: trust_state - trust state dx - proposed step, size p work - workspace, size n Return: predicted reduction */ static double quadratic_preduction(const gsl_multilarge_nlinear_trust_state * trust_state, const gsl_vector * dx, gsl_vector * work) { const gsl_vector * f = trust_state->f; const gsl_multilarge_nlinear_parameters * params = trust_state->params; const double normf = gsl_blas_dnrm2(f); double gTdx; /* g^T dx */ gsl_multilarge_nlinear_fdf * fdf = trust_state->fdf; double pred_reduction, u; /* compute g^T dx */ gsl_blas_ddot(trust_state->g, dx, &gTdx); /* first term: -2 g^T dx / ||f||^2 */ pred_reduction = -2.0 * gTdx / (normf * normf); if (params->solver == gsl_multilarge_nlinear_solver_cholesky || params->solver == gsl_multilarge_nlinear_solver_mcholesky) { const size_t p = fdf->p; gsl_vector_view workp = gsl_vector_subvector(work, 0, p); /* compute workp = J^T J dx */ gsl_blas_dsymv(CblasLower, 1.0, trust_state->JTJ, dx, 0.0, &workp.vector); /* compute u = dx^T J^T J dx = ||J dx||^2 */ gsl_blas_ddot(&workp.vector, dx, &u); pred_reduction -= u / (normf * normf); } else { int status; const gsl_vector * x = trust_state->x; const gsl_vector * swts = trust_state->sqrt_wts; /* compute work = J*dx */ status = gsl_multilarge_nlinear_eval_df(CblasNoTrans, x, f, dx, swts, params->h_df, params->fdtype, fdf, work, NULL, NULL); if (status) { GSL_ERROR_VAL("error computing preduction", status, 0.0); } /* compute u = ||J*dx|| / ||f|| */ u = gsl_blas_dnrm2(work) / normf; pred_reduction -= u * u; } return pred_reduction; }