/* poly/gsl_poly.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_POLY_H__ #define __GSL_POLY_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Evaluate polynomial * * c[0] + c[1] x + c[2] x^2 + ... + c[len-1] x^(len-1) * * exceptions: none */ /* real polynomial, real x */ INLINE_DECL double gsl_poly_eval(const double c[], const int len, const double x); /* real polynomial, complex x */ INLINE_DECL gsl_complex gsl_poly_complex_eval (const double c [], const int len, const gsl_complex z); /* complex polynomial, complex x */ INLINE_DECL gsl_complex gsl_complex_poly_complex_eval (const gsl_complex c [], const int len, const gsl_complex z); int gsl_poly_eval_derivs(const double c[], const size_t lenc, const double x, double res[], const size_t lenres); #ifdef HAVE_INLINE INLINE_FUN double gsl_poly_eval(const double c[], const int len, const double x) { int i; double ans = c[len-1]; for(i=len-1; i>0; i--) ans = c[i-1] + x * ans; return ans; } INLINE_FUN gsl_complex gsl_poly_complex_eval(const double c[], const int len, const gsl_complex z) { int i; gsl_complex ans; GSL_SET_COMPLEX (&ans, c[len-1], 0.0); for(i=len-1; i>0; i--) { /* The following three lines are equivalent to ans = gsl_complex_add_real (gsl_complex_mul (z, ans), c[i-1]); but faster */ double tmp = c[i-1] + GSL_REAL (z) * GSL_REAL (ans) - GSL_IMAG (z) * GSL_IMAG (ans); GSL_SET_IMAG (&ans, GSL_IMAG (z) * GSL_REAL (ans) + GSL_REAL (z) * GSL_IMAG (ans)); GSL_SET_REAL (&ans, tmp); } return ans; } INLINE_FUN gsl_complex gsl_complex_poly_complex_eval(const gsl_complex c[], const int len, const gsl_complex z) { int i; gsl_complex ans = c[len-1]; for(i=len-1; i>0; i--) { /* The following three lines are equivalent to ans = gsl_complex_add (c[i-1], gsl_complex_mul (x, ans)); but faster */ double tmp = GSL_REAL (c[i-1]) + GSL_REAL (z) * GSL_REAL (ans) - GSL_IMAG (z) * GSL_IMAG (ans); GSL_SET_IMAG (&ans, GSL_IMAG (c[i-1]) + GSL_IMAG (z) * GSL_REAL (ans) + GSL_REAL (z) * GSL_IMAG (ans)); GSL_SET_REAL (&ans, tmp); } return ans; } #endif /* HAVE_INLINE */ /* Work with divided-difference polynomials, Abramowitz & Stegun 25.2.26 */ int gsl_poly_dd_init (double dd[], const double x[], const double y[], size_t size); INLINE_DECL double gsl_poly_dd_eval (const double dd[], const double xa[], const size_t size, const double x); #ifdef HAVE_INLINE INLINE_FUN double gsl_poly_dd_eval(const double dd[], const double xa[], const size_t size, const double x) { size_t i; double y = dd[size - 1]; for (i = size - 1; i--;) y = dd[i] + (x - xa[i]) * y; return y; } #endif /* HAVE_INLINE */ int gsl_poly_dd_taylor (double c[], double xp, const double dd[], const double x[], size_t size, double w[]); int gsl_poly_dd_hermite_init (double dd[], double z[], const double xa[], const double ya[], const double dya[], const size_t size); /* Solve for real or complex roots of the standard quadratic equation, * returning the number of real roots. * * Roots are returned ordered. */ int gsl_poly_solve_quadratic (double a, double b, double c, double * x0, double * x1); int gsl_poly_complex_solve_quadratic (double a, double b, double c, gsl_complex * z0, gsl_complex * z1); /* Solve for real roots of the cubic equation * x^3 + a x^2 + b x + c = 0, returning the * number of real roots. * * Roots are returned ordered. */ int gsl_poly_solve_cubic (double a, double b, double c, double * x0, double * x1, double * x2); int gsl_poly_complex_solve_cubic (double a, double b, double c, gsl_complex * z0, gsl_complex * z1, gsl_complex * z2); /* Solve for the complex roots of a general real polynomial */ typedef struct { size_t nc ; double * matrix ; } gsl_poly_complex_workspace ; gsl_poly_complex_workspace * gsl_poly_complex_workspace_alloc (size_t n); void gsl_poly_complex_workspace_free (gsl_poly_complex_workspace * w); int gsl_poly_complex_solve (const double * a, size_t n, gsl_poly_complex_workspace * w, gsl_complex_packed_ptr z); __END_DECLS #endif /* __GSL_POLY_H__ */