/* rng/taus113.c * Copyright (C) 2002 Atakan Gurkan * Based on the file taus.c which has the notice * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* This is a maximally equidistributed combined, collision free Tausworthe generator, with a period ~2^{113}. The sequence is, x_n = (z1_n ^ z2_n ^ z3_n ^ z4_n) b = (((z1_n << 6) ^ z1_n) >> 13) z1_{n+1} = (((z1_n & 4294967294) << 18) ^ b) b = (((z2_n << 2) ^ z2_n) >> 27) z2_{n+1} = (((z2_n & 4294967288) << 2) ^ b) b = (((z3_n << 13) ^ z3_n) >> 21) z3_{n+1} = (((z3_n & 4294967280) << 7) ^ b) b = (((z4_n << 3) ^ z4_n) >> 12) z4_{n+1} = (((z4_n & 4294967168) << 13) ^ b) computed modulo 2^32. In the formulas above '^' means exclusive-or (C-notation), not exponentiation. The algorithm is for 32-bit integers, hence a bitmask is used to clear all but least significant 32 bits, after left shifts, to make the code work on architectures where integers are 64-bit. The generator is initialized with z{i+1} = (69069 * zi) MOD 2^32 where z0 is the seed provided During initialization a check is done to make sure that the initial seeds have a required number of their most significant bits set. After this, the state is passed through the RNG 10 times to ensure the state satisfies a recurrence relation. References: P. L'Ecuyer, "Tables of Maximally-Equidistributed Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999), 261--269. http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe Generators", Mathematics of Computation, 65, 213 (1996), 203--213. http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps the online version of the latter contains corrections to the print version. */ #include #include #include #define LCG(n) ((69069UL * n) & 0xffffffffUL) #define MASK 0xffffffffUL static inline unsigned long int taus113_get (void *vstate); static double taus113_get_double (void *vstate); static void taus113_set (void *state, unsigned long int s); typedef struct { unsigned long int z1, z2, z3, z4; } taus113_state_t; static inline unsigned long taus113_get (void *vstate) { taus113_state_t *state = (taus113_state_t *) vstate; unsigned long b1, b2, b3, b4; b1 = ((((state->z1 << 6UL) & MASK) ^ state->z1) >> 13UL); state->z1 = ((((state->z1 & 4294967294UL) << 18UL) & MASK) ^ b1); b2 = ((((state->z2 << 2UL) & MASK) ^ state->z2) >> 27UL); state->z2 = ((((state->z2 & 4294967288UL) << 2UL) & MASK) ^ b2); b3 = ((((state->z3 << 13UL) & MASK) ^ state->z3) >> 21UL); state->z3 = ((((state->z3 & 4294967280UL) << 7UL) & MASK) ^ b3); b4 = ((((state->z4 << 3UL) & MASK) ^ state->z4) >> 12UL); state->z4 = ((((state->z4 & 4294967168UL) << 13UL) & MASK) ^ b4); return (state->z1 ^ state->z2 ^ state->z3 ^ state->z4); } static double taus113_get_double (void *vstate) { return taus113_get (vstate) / 4294967296.0; } static void taus113_set (void *vstate, unsigned long int s) { taus113_state_t *state = (taus113_state_t *) vstate; if (!s) s = 1UL; /* default seed is 1 */ state->z1 = LCG (s); if (state->z1 < 2UL) state->z1 += 2UL; state->z2 = LCG (state->z1); if (state->z2 < 8UL) state->z2 += 8UL; state->z3 = LCG (state->z2); if (state->z3 < 16UL) state->z3 += 16UL; state->z4 = LCG (state->z3); if (state->z4 < 128UL) state->z4 += 128UL; /* Calling RNG ten times to satify recurrence condition */ taus113_get (state); taus113_get (state); taus113_get (state); taus113_get (state); taus113_get (state); taus113_get (state); taus113_get (state); taus113_get (state); taus113_get (state); taus113_get (state); return; } static const gsl_rng_type taus113_type = { "taus113", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (taus113_state_t), &taus113_set, &taus113_get, &taus113_get_double }; const gsl_rng_type *gsl_rng_taus113 = &taus113_type; /* Rules for analytic calculations using GNU Emacs Calc: (used to find the values for the test program) [ LCG(n) := n * 69069 mod (2^32) ] [ b1(x) := rsh(xor(lsh(x, 6), x), 13), q1(x) := xor(lsh(and(x, 4294967294), 18), b1(x)), b2(x) := rsh(xor(lsh(x, 2), x), 27), q2(x) := xor(lsh(and(x, 4294967288), 2), b2(x)), b3(x) := rsh(xor(lsh(x, 13), x), 21), q3(x) := xor(lsh(and(x, 4294967280), 7), b3(x)), b4(x) := rsh(xor(lsh(x, 3), x), 12), q4(x) := xor(lsh(and(x, 4294967168), 13), b4(x)) ] [ S([z1,z2,z3,z4]) := [q1(z1), q2(z2), q3(z3), q4(z4)] ] */