h264-reader =========== Reader for H264 bitstream syntax, written in Rust. [![crates.io version](https://img.shields.io/crates/v/h264-reader.svg)](https://crates.io/crates/h264-reader) [![Documentation](https://docs.rs/h264-reader/badge.svg)](https://docs.rs/h264-reader) Aims to provide access to stream metadata; does not actually decode the video. The implementation attempts to minimise copying of source data, for efficiency, at the cost of a more complicated API ## Supported syntax The following list shows the current state of support per H264 syntax element: * Bytestream formats * [x] _Annex B_ format (e.g. in MPEG-TS) * [x] _AVCC_ format (e.g. in MP4) * Network Abstraction Layer Units (NAL Units) * [ ] `slice_layer_without_partitioning_rbsp()` * [ ] `slice_data_partition_a_layer_rbsp()` * [ ] `slice_data_partition_b_layer_rbsp()` * [ ] `slice_data_partition_c_layer_rbsp()` * [ ] `slice_layer_without_partitioning_rbsp()` * [ ] `sei_rbsp()` _Supplementary Enhancement Information_ headers - the following payloads are supported: * [x] `buffering_period()` * [x] `pic_timing()` * [ ] `pan_scan_rect()` * [ ] `filler_payload()` * [x] `user_data_registered_itu_t_t35()` * [ ] `user_data_unregistered()` * [ ] `recovery_point()` * [ ] `dec_ref_pic_marking_repetition()` * [ ] `spare_pic()` * [ ] `scene_info()` * [ ] `sub_seq_info()` * [ ] `sub_seq_layer_characteristics()` * [ ] `sub_seq_characteristics()` * [ ] `full_frame_freeze()` * [ ] `full_frame_freeze_release()` * [ ] `full_frame_snapshot()` * [ ] `progressive_refinement_segment_start()` * [ ] `progressive_refinement_segment_end()` * [ ] `motion_constrained_slice_group_set()` * [ ] `film_grain_characteristics()` * [ ] `deblocking_filter_display_preference()` * [ ] `stereo_video_info()` * [ ] `post_filter_hint()` * [ ] `tone_mapping_info()` * [ ] _Annex G_ headers * [ ] _Annex H_ headers * [ ] _Annex I_ headers * [ ] _Annex J_ headers * [ ] `frame_packing_arrangement()` * [ ] `display_orientation()` * [ ] `mastering_display_colour_volume()` * [ ] `colour_remapping_info()` * [ ] `alternative_transfer_characteristics()` * [ ] `alternative_depth_info()` * [x] `seq_parameter_set_rbsp()` * [x] `pic_parameter_set_rbsp()` * [ ] `access_unit_delimiter_rbsp()` * [ ] `end_of_stream_rbsp()` * [ ] `filler_data_rbsp()` * [ ] `seq_parameter_set_extension_rbsp()` * [ ] `prefix_nal_unit_rbsp()` * [ ] `subset_seq_parameter_set_rbsp()` * [ ] `depth_parameter_set_rbsp()` * [ ] `slice_layer_without_partitioning_rbsp()` * [ ] `slice_layer_extension_rbsp()` * [ ] `slice_layer_extension_rbsp()` ## Design goals ### Avoid copies Parsing components accept partial data to avoid coping data into intermediate buffers. This is intended to support common cases like, - data embedded in MPEG-TS packets, where h264 data is interspersed with MPEG-TS header data - data being read from the network, where the data available at any instant may be incomplete An alternative to accepting partial data would be to take a number of peices of partial data ### Lazy parsing The implementation should be written to defer parsing data structures until an accessor method is called. This can mean saving parsing costs for callers that don't care about all the data. It can be difficult to apply this principal universally, so in some areas we don't bother and just 'eager parse' (particularly structures defined bit-by-bit rather than byte-by-byte).