/* MIT License * * Copyright (c) 2016-2017 INRIA and Microsoft Corporation * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "Hacl_Poly1305_32.h" inline static void Hacl_Bignum_Modulo_reduce(uint32_t *b) { uint32_t b0 = b[0U]; b[0U] = (b0 << (uint32_t)2U) + b0; } inline static void Hacl_Bignum_Modulo_carry_top(uint32_t *b) { uint32_t b4 = b[4U]; uint32_t b0 = b[0U]; uint32_t b4_26 = b4 >> (uint32_t)26U; b[4U] = b4 & (uint32_t)0x3ffffffU; b[0U] = (b4_26 << (uint32_t)2U) + b4_26 + b0; } inline static void Hacl_Bignum_Modulo_carry_top_wide(uint64_t *b) { uint64_t b4 = b[4U]; uint64_t b0 = b[0U]; uint64_t b4_ = b4 & (uint64_t)(uint32_t)0x3ffffffU; uint32_t b4_26 = (uint32_t)(b4 >> (uint32_t)26U); uint64_t b0_ = b0 + (uint64_t)((b4_26 << (uint32_t)2U) + b4_26); b[4U] = b4_; b[0U] = b0_; } inline static void Hacl_Bignum_Fproduct_copy_from_wide_(uint32_t *output, uint64_t *input) { for (uint32_t i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U) { uint64_t xi = input[i]; output[i] = (uint32_t)xi; } } inline static void Hacl_Bignum_Fproduct_sum_scalar_multiplication_(uint64_t *output, uint32_t *input, uint32_t s) { for (uint32_t i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U) { uint64_t xi = output[i]; uint32_t yi = input[i]; output[i] = xi + (uint64_t)yi * (uint64_t)s; } } inline static void Hacl_Bignum_Fproduct_carry_wide_(uint64_t *tmp) { for (uint32_t i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U) { uint32_t ctr = i; uint64_t tctr = tmp[ctr]; uint64_t tctrp1 = tmp[ctr + (uint32_t)1U]; uint32_t r0 = (uint32_t)tctr & (uint32_t)0x3ffffffU; uint64_t c = tctr >> (uint32_t)26U; tmp[ctr] = (uint64_t)r0; tmp[ctr + (uint32_t)1U] = tctrp1 + c; } } inline static void Hacl_Bignum_Fproduct_carry_limb_(uint32_t *tmp) { for (uint32_t i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U) { uint32_t ctr = i; uint32_t tctr = tmp[ctr]; uint32_t tctrp1 = tmp[ctr + (uint32_t)1U]; uint32_t r0 = tctr & (uint32_t)0x3ffffffU; uint32_t c = tctr >> (uint32_t)26U; tmp[ctr] = r0; tmp[ctr + (uint32_t)1U] = tctrp1 + c; } } inline static void Hacl_Bignum_Fmul_shift_reduce(uint32_t *output) { uint32_t tmp = output[4U]; for (uint32_t i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U) { uint32_t ctr = (uint32_t)5U - i - (uint32_t)1U; uint32_t z = output[ctr - (uint32_t)1U]; output[ctr] = z; } output[0U] = tmp; Hacl_Bignum_Modulo_reduce(output); } static void Hacl_Bignum_Fmul_mul_shift_reduce_(uint64_t *output, uint32_t *input, uint32_t *input2) { for (uint32_t i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U) { uint32_t input2i = input2[i]; Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i); Hacl_Bignum_Fmul_shift_reduce(input); } uint32_t i = (uint32_t)4U; uint32_t input2i = input2[i]; Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i); } inline static void Hacl_Bignum_Fmul_fmul(uint32_t *output, uint32_t *input, uint32_t *input2) { uint32_t tmp[5U] = { 0U }; memcpy(tmp, input, (uint32_t)5U * sizeof input[0U]); uint64_t t[5U] = { 0U }; Hacl_Bignum_Fmul_mul_shift_reduce_(t, tmp, input2); Hacl_Bignum_Fproduct_carry_wide_(t); Hacl_Bignum_Modulo_carry_top_wide(t); Hacl_Bignum_Fproduct_copy_from_wide_(output, t); uint32_t i0 = output[0U]; uint32_t i1 = output[1U]; uint32_t i0_ = i0 & (uint32_t)0x3ffffffU; uint32_t i1_ = i1 + (i0 >> (uint32_t)26U); output[0U] = i0_; output[1U] = i1_; } inline static void Hacl_Bignum_AddAndMultiply_add_and_multiply(uint32_t *acc, uint32_t *block, uint32_t *r) { for (uint32_t i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U) { uint32_t xi = acc[i]; uint32_t yi = block[i]; acc[i] = xi + yi; } Hacl_Bignum_Fmul_fmul(acc, acc, r); } inline static void Hacl_Impl_Poly1305_32_poly1305_update( Hacl_Impl_Poly1305_32_State_poly1305_state st, uint8_t *m ) { Hacl_Impl_Poly1305_32_State_poly1305_state scrut0 = st; uint32_t *h = scrut0.h; uint32_t *acc = h; Hacl_Impl_Poly1305_32_State_poly1305_state scrut = st; uint32_t *r = scrut.r; uint32_t *r5 = r; uint32_t tmp[5U] = { 0U }; uint8_t *s0 = m; uint8_t *s1 = m + (uint32_t)3U; uint8_t *s2 = m + (uint32_t)6U; uint8_t *s3 = m + (uint32_t)9U; uint8_t *s4 = m + (uint32_t)12U; uint32_t i0 = load32_le(s0); uint32_t i1 = load32_le(s1); uint32_t i2 = load32_le(s2); uint32_t i3 = load32_le(s3); uint32_t i4 = load32_le(s4); uint32_t r0 = i0 & (uint32_t)0x3ffffffU; uint32_t r1 = i1 >> (uint32_t)2U & (uint32_t)0x3ffffffU; uint32_t r2 = i2 >> (uint32_t)4U & (uint32_t)0x3ffffffU; uint32_t r3 = i3 >> (uint32_t)6U & (uint32_t)0x3ffffffU; uint32_t r4 = i4 >> (uint32_t)8U; tmp[0U] = r0; tmp[1U] = r1; tmp[2U] = r2; tmp[3U] = r3; tmp[4U] = r4; uint32_t b4 = tmp[4U]; uint32_t b4_ = (uint32_t)0x1000000U | b4; tmp[4U] = b4_; Hacl_Bignum_AddAndMultiply_add_and_multiply(acc, tmp, r5); } inline static void Hacl_Impl_Poly1305_32_poly1305_process_last_block_( uint8_t *block, Hacl_Impl_Poly1305_32_State_poly1305_state st, uint8_t *m, uint64_t rem_ ) { uint32_t tmp[5U] = { 0U }; uint8_t *s0 = block; uint8_t *s1 = block + (uint32_t)3U; uint8_t *s2 = block + (uint32_t)6U; uint8_t *s3 = block + (uint32_t)9U; uint8_t *s4 = block + (uint32_t)12U; uint32_t i0 = load32_le(s0); uint32_t i1 = load32_le(s1); uint32_t i2 = load32_le(s2); uint32_t i3 = load32_le(s3); uint32_t i4 = load32_le(s4); uint32_t r0 = i0 & (uint32_t)0x3ffffffU; uint32_t r1 = i1 >> (uint32_t)2U & (uint32_t)0x3ffffffU; uint32_t r2 = i2 >> (uint32_t)4U & (uint32_t)0x3ffffffU; uint32_t r3 = i3 >> (uint32_t)6U & (uint32_t)0x3ffffffU; uint32_t r4 = i4 >> (uint32_t)8U; tmp[0U] = r0; tmp[1U] = r1; tmp[2U] = r2; tmp[3U] = r3; tmp[4U] = r4; Hacl_Impl_Poly1305_32_State_poly1305_state scrut0 = st; uint32_t *h = scrut0.h; Hacl_Impl_Poly1305_32_State_poly1305_state scrut = st; uint32_t *r = scrut.r; Hacl_Bignum_AddAndMultiply_add_and_multiply(h, tmp, r); } inline static void Hacl_Impl_Poly1305_32_poly1305_process_last_block( Hacl_Impl_Poly1305_32_State_poly1305_state st, uint8_t *m, uint64_t rem_ ) { uint8_t zero1 = (uint8_t)0U; KRML_CHECK_SIZE(zero1, (uint32_t)16U); uint8_t block[16U]; for (uint32_t _i = 0U; _i < (uint32_t)16U; ++_i) block[_i] = zero1; uint32_t i0 = (uint32_t)rem_; uint32_t i = (uint32_t)rem_; memcpy(block, m, i * sizeof m[0U]); block[i0] = (uint8_t)1U; Hacl_Impl_Poly1305_32_poly1305_process_last_block_(block, st, m, rem_); } static void Hacl_Impl_Poly1305_32_poly1305_last_pass(uint32_t *acc) { Hacl_Bignum_Fproduct_carry_limb_(acc); Hacl_Bignum_Modulo_carry_top(acc); uint32_t t0 = acc[0U]; uint32_t t10 = acc[1U]; uint32_t t20 = acc[2U]; uint32_t t30 = acc[3U]; uint32_t t40 = acc[4U]; uint32_t t1_ = t10 + (t0 >> (uint32_t)26U); uint32_t mask_261 = (uint32_t)0x3ffffffU; uint32_t t0_ = t0 & mask_261; uint32_t t2_ = t20 + (t1_ >> (uint32_t)26U); uint32_t t1__ = t1_ & mask_261; uint32_t t3_ = t30 + (t2_ >> (uint32_t)26U); uint32_t t2__ = t2_ & mask_261; uint32_t t4_ = t40 + (t3_ >> (uint32_t)26U); uint32_t t3__ = t3_ & mask_261; acc[0U] = t0_; acc[1U] = t1__; acc[2U] = t2__; acc[3U] = t3__; acc[4U] = t4_; Hacl_Bignum_Modulo_carry_top(acc); uint32_t t00 = acc[0U]; uint32_t t1 = acc[1U]; uint32_t t2 = acc[2U]; uint32_t t3 = acc[3U]; uint32_t t4 = acc[4U]; uint32_t t1_0 = t1 + (t00 >> (uint32_t)26U); uint32_t t0_0 = t00 & (uint32_t)0x3ffffffU; uint32_t t2_0 = t2 + (t1_0 >> (uint32_t)26U); uint32_t t1__0 = t1_0 & (uint32_t)0x3ffffffU; uint32_t t3_0 = t3 + (t2_0 >> (uint32_t)26U); uint32_t t2__0 = t2_0 & (uint32_t)0x3ffffffU; uint32_t t4_0 = t4 + (t3_0 >> (uint32_t)26U); uint32_t t3__0 = t3_0 & (uint32_t)0x3ffffffU; acc[0U] = t0_0; acc[1U] = t1__0; acc[2U] = t2__0; acc[3U] = t3__0; acc[4U] = t4_0; Hacl_Bignum_Modulo_carry_top(acc); uint32_t i0 = acc[0U]; uint32_t i1 = acc[1U]; uint32_t i0_ = i0 & (uint32_t)0x3ffffffU; uint32_t i1_ = i1 + (i0 >> (uint32_t)26U); acc[0U] = i0_; acc[1U] = i1_; uint32_t a0 = acc[0U]; uint32_t a1 = acc[1U]; uint32_t a2 = acc[2U]; uint32_t a3 = acc[3U]; uint32_t a4 = acc[4U]; uint32_t mask0 = FStar_UInt32_gte_mask(a0, (uint32_t)0x3fffffbU); uint32_t mask1 = FStar_UInt32_eq_mask(a1, (uint32_t)0x3ffffffU); uint32_t mask2 = FStar_UInt32_eq_mask(a2, (uint32_t)0x3ffffffU); uint32_t mask3 = FStar_UInt32_eq_mask(a3, (uint32_t)0x3ffffffU); uint32_t mask4 = FStar_UInt32_eq_mask(a4, (uint32_t)0x3ffffffU); uint32_t mask = (((mask0 & mask1) & mask2) & mask3) & mask4; uint32_t a0_ = a0 - ((uint32_t)0x3fffffbU & mask); uint32_t a1_ = a1 - ((uint32_t)0x3ffffffU & mask); uint32_t a2_ = a2 - ((uint32_t)0x3ffffffU & mask); uint32_t a3_ = a3 - ((uint32_t)0x3ffffffU & mask); uint32_t a4_ = a4 - ((uint32_t)0x3ffffffU & mask); acc[0U] = a0_; acc[1U] = a1_; acc[2U] = a2_; acc[3U] = a3_; acc[4U] = a4_; } static Hacl_Impl_Poly1305_32_State_poly1305_state Hacl_Impl_Poly1305_32_mk_state(uint32_t *r, uint32_t *h) { return ((Hacl_Impl_Poly1305_32_State_poly1305_state){ .r = r, .h = h }); } static void Hacl_Standalone_Poly1305_32_poly1305_blocks( Hacl_Impl_Poly1305_32_State_poly1305_state st, uint8_t *m, uint64_t len1 ) { if (!(len1 == (uint64_t)0U)) { uint8_t *block = m; uint8_t *tail1 = m + (uint32_t)16U; Hacl_Impl_Poly1305_32_poly1305_update(st, block); uint64_t len2 = len1 - (uint64_t)1U; Hacl_Standalone_Poly1305_32_poly1305_blocks(st, tail1, len2); } } static void Hacl_Standalone_Poly1305_32_poly1305_partial( Hacl_Impl_Poly1305_32_State_poly1305_state st, uint8_t *input, uint64_t len1, uint8_t *kr ) { Hacl_Impl_Poly1305_32_State_poly1305_state scrut = st; uint32_t *r = scrut.r; uint32_t *x0 = r; FStar_UInt128_t k1 = load128_le(kr); FStar_UInt128_t k_clamped = FStar_UInt128_logand(k1, FStar_UInt128_logor(FStar_UInt128_shift_left(FStar_UInt128_uint64_to_uint128((uint64_t)0x0ffffffc0ffffffcU), (uint32_t)64U), FStar_UInt128_uint64_to_uint128((uint64_t)0x0ffffffc0fffffffU))); uint32_t r0 = (uint32_t)FStar_UInt128_uint128_to_uint64(k_clamped) & (uint32_t)0x3ffffffU; uint32_t r1 = (uint32_t)FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(k_clamped, (uint32_t)26U)) & (uint32_t)0x3ffffffU; uint32_t r2 = (uint32_t)FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(k_clamped, (uint32_t)52U)) & (uint32_t)0x3ffffffU; uint32_t r3 = (uint32_t)FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(k_clamped, (uint32_t)78U)) & (uint32_t)0x3ffffffU; uint32_t r4 = (uint32_t)FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(k_clamped, (uint32_t)104U)) & (uint32_t)0x3ffffffU; x0[0U] = r0; x0[1U] = r1; x0[2U] = r2; x0[3U] = r3; x0[4U] = r4; Hacl_Impl_Poly1305_32_State_poly1305_state scrut0 = st; uint32_t *h = scrut0.h; uint32_t *x00 = h; x00[0U] = (uint32_t)0U; x00[1U] = (uint32_t)0U; x00[2U] = (uint32_t)0U; x00[3U] = (uint32_t)0U; x00[4U] = (uint32_t)0U; Hacl_Standalone_Poly1305_32_poly1305_blocks(st, input, len1); } static void Hacl_Standalone_Poly1305_32_poly1305_complete( Hacl_Impl_Poly1305_32_State_poly1305_state st, uint8_t *m, uint64_t len1, uint8_t *k1 ) { uint8_t *kr = k1; uint64_t len16 = len1 >> (uint32_t)4U; uint64_t rem16 = len1 & (uint64_t)0xfU; uint8_t *part_input = m; uint8_t *last_block = m + (uint32_t)((uint64_t)16U * len16); Hacl_Standalone_Poly1305_32_poly1305_partial(st, part_input, len16, kr); if (!(rem16 == (uint64_t)0U)) Hacl_Impl_Poly1305_32_poly1305_process_last_block(st, last_block, rem16); Hacl_Impl_Poly1305_32_State_poly1305_state scrut = st; uint32_t *h = scrut.h; uint32_t *acc = h; Hacl_Impl_Poly1305_32_poly1305_last_pass(acc); } static void Hacl_Standalone_Poly1305_32_crypto_onetimeauth_( uint8_t *output, uint8_t *input, uint64_t len1, uint8_t *k1 ) { uint32_t buf[10U] = { 0U }; uint32_t *r = buf; uint32_t *h = buf + (uint32_t)5U; Hacl_Impl_Poly1305_32_State_poly1305_state st = Hacl_Impl_Poly1305_32_mk_state(r, h); uint8_t *key_s = k1 + (uint32_t)16U; Hacl_Standalone_Poly1305_32_poly1305_complete(st, input, len1, k1); Hacl_Impl_Poly1305_32_State_poly1305_state scrut = st; uint32_t *h5 = scrut.h; uint32_t *acc = h5; FStar_UInt128_t k_ = load128_le(key_s); uint32_t h0 = acc[0U]; uint32_t h1 = acc[1U]; uint32_t h2 = acc[2U]; uint32_t h3 = acc[3U]; uint32_t h4 = acc[4U]; FStar_UInt128_t acc_ = FStar_UInt128_logor(FStar_UInt128_shift_left(FStar_UInt128_uint64_to_uint128((uint64_t)h4), (uint32_t)104U), FStar_UInt128_logor(FStar_UInt128_shift_left(FStar_UInt128_uint64_to_uint128((uint64_t)h3), (uint32_t)78U), FStar_UInt128_logor(FStar_UInt128_shift_left(FStar_UInt128_uint64_to_uint128((uint64_t)h2), (uint32_t)52U), FStar_UInt128_logor(FStar_UInt128_shift_left(FStar_UInt128_uint64_to_uint128((uint64_t)h1), (uint32_t)26U), FStar_UInt128_uint64_to_uint128((uint64_t)h0))))); FStar_UInt128_t mac_ = FStar_UInt128_add_mod(acc_, k_); store128_le(output, mac_); } static void Hacl_Standalone_Poly1305_32_crypto_onetimeauth( uint8_t *output, uint8_t *input, uint64_t len1, uint8_t *k1 ) { Hacl_Standalone_Poly1305_32_crypto_onetimeauth_(output, input, len1, k1); } void *Hacl_Poly1305_32_op_String_Access(FStar_Monotonic_HyperStack_mem h, uint8_t *b) { return (void *)(uint8_t)0U; } Hacl_Impl_Poly1305_32_State_poly1305_state Hacl_Poly1305_32_mk_state(uint32_t *r, uint32_t *acc) { return Hacl_Impl_Poly1305_32_mk_state(r, acc); } void Hacl_Poly1305_32_init(Hacl_Impl_Poly1305_32_State_poly1305_state st, uint8_t *k1) { Hacl_Impl_Poly1305_32_State_poly1305_state scrut = st; uint32_t *r = scrut.r; uint32_t *x0 = r; FStar_UInt128_t k10 = load128_le(k1); FStar_UInt128_t k_clamped = FStar_UInt128_logand(k10, FStar_UInt128_logor(FStar_UInt128_shift_left(FStar_UInt128_uint64_to_uint128((uint64_t)0x0ffffffc0ffffffcU), (uint32_t)64U), FStar_UInt128_uint64_to_uint128((uint64_t)0x0ffffffc0fffffffU))); uint32_t r0 = (uint32_t)FStar_UInt128_uint128_to_uint64(k_clamped) & (uint32_t)0x3ffffffU; uint32_t r1 = (uint32_t)FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(k_clamped, (uint32_t)26U)) & (uint32_t)0x3ffffffU; uint32_t r2 = (uint32_t)FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(k_clamped, (uint32_t)52U)) & (uint32_t)0x3ffffffU; uint32_t r3 = (uint32_t)FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(k_clamped, (uint32_t)78U)) & (uint32_t)0x3ffffffU; uint32_t r4 = (uint32_t)FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(k_clamped, (uint32_t)104U)) & (uint32_t)0x3ffffffU; x0[0U] = r0; x0[1U] = r1; x0[2U] = r2; x0[3U] = r3; x0[4U] = r4; Hacl_Impl_Poly1305_32_State_poly1305_state scrut0 = st; uint32_t *h = scrut0.h; uint32_t *x00 = h; x00[0U] = (uint32_t)0U; x00[1U] = (uint32_t)0U; x00[2U] = (uint32_t)0U; x00[3U] = (uint32_t)0U; x00[4U] = (uint32_t)0U; } void *Hacl_Poly1305_32_empty_log = (void *)(uint8_t)0U; void Hacl_Poly1305_32_update_block(Hacl_Impl_Poly1305_32_State_poly1305_state st, uint8_t *m) { Hacl_Impl_Poly1305_32_poly1305_update(st, m); } void Hacl_Poly1305_32_update( Hacl_Impl_Poly1305_32_State_poly1305_state st, uint8_t *m, uint32_t len1 ) { if (!(len1 == (uint32_t)0U)) { uint8_t *block = m; uint8_t *m_ = m + (uint32_t)16U; uint32_t len2 = len1 - (uint32_t)1U; Hacl_Poly1305_32_update_block(st, block); Hacl_Poly1305_32_update(st, m_, len2); } } void Hacl_Poly1305_32_update_last( Hacl_Impl_Poly1305_32_State_poly1305_state st, uint8_t *m, uint32_t len1 ) { if (!((uint64_t)len1 == (uint64_t)0U)) Hacl_Impl_Poly1305_32_poly1305_process_last_block(st, m, (uint64_t)len1); Hacl_Impl_Poly1305_32_State_poly1305_state scrut = st; uint32_t *h = scrut.h; uint32_t *acc = h; Hacl_Impl_Poly1305_32_poly1305_last_pass(acc); } void Hacl_Poly1305_32_finish( Hacl_Impl_Poly1305_32_State_poly1305_state st, uint8_t *mac, uint8_t *k1 ) { Hacl_Impl_Poly1305_32_State_poly1305_state scrut = st; uint32_t *h = scrut.h; uint32_t *acc = h; FStar_UInt128_t k_ = load128_le(k1); uint32_t h0 = acc[0U]; uint32_t h1 = acc[1U]; uint32_t h2 = acc[2U]; uint32_t h3 = acc[3U]; uint32_t h4 = acc[4U]; FStar_UInt128_t acc_ = FStar_UInt128_logor(FStar_UInt128_shift_left(FStar_UInt128_uint64_to_uint128((uint64_t)h4), (uint32_t)104U), FStar_UInt128_logor(FStar_UInt128_shift_left(FStar_UInt128_uint64_to_uint128((uint64_t)h3), (uint32_t)78U), FStar_UInt128_logor(FStar_UInt128_shift_left(FStar_UInt128_uint64_to_uint128((uint64_t)h2), (uint32_t)52U), FStar_UInt128_logor(FStar_UInt128_shift_left(FStar_UInt128_uint64_to_uint128((uint64_t)h1), (uint32_t)26U), FStar_UInt128_uint64_to_uint128((uint64_t)h0))))); FStar_UInt128_t mac_ = FStar_UInt128_add_mod(acc_, k_); store128_le(mac, mac_); } void Hacl_Poly1305_32_crypto_onetimeauth( uint8_t *output, uint8_t *input, uint64_t len1, uint8_t *k1 ) { Hacl_Standalone_Poly1305_32_crypto_onetimeauth(output, input, len1, k1); }