#include #include #include "kip.h" #include "npdm.h" #include "cJSON.h" void ini1_process(ini1_ctx_t *ctx) { /* Read *just* safe amount. */ ini1_header_t raw_header; fseeko64(ctx->file, 0, SEEK_SET); if (fread(&raw_header, 1, sizeof(raw_header), ctx->file) != sizeof(raw_header)) { fprintf(stderr, "Failed to read INI1 header!\n"); exit(EXIT_FAILURE); } if (raw_header.magic != MAGIC_INI1 || raw_header.num_processes > INI1_MAX_KIPS) { printf("Error: INI1 is corrupt!\n"); exit(EXIT_FAILURE); } ctx->header = malloc(raw_header.size); if (ctx->header == NULL) { fprintf(stderr, "Failed to allocate INI1 header!\n"); exit(EXIT_FAILURE); } fseeko64(ctx->file, 0, SEEK_SET); if (fread(ctx->header, 1, raw_header.size, ctx->file) != raw_header.size) { fprintf(stderr, "Failed to read INI1!\n"); exit(EXIT_FAILURE); } uint64_t offset = 0; for (unsigned int i = 0; i < ctx->header->num_processes; i++) { ctx->kips[i].tool_ctx = ctx->tool_ctx; ctx->kips[i].header = (kip1_header_t *)&ctx->header->kip_data[offset]; if (ctx->kips[i].header->magic != MAGIC_KIP1) { fprintf(stderr, "INI1 is corrupted!\n"); exit(EXIT_FAILURE); } offset += kip1_get_size(&ctx->kips[i]); } if (ctx->tool_ctx->action & ACTION_INFO) { ini1_print(ctx); } if (ctx->tool_ctx->action & ACTION_EXTRACT) { ini1_save(ctx); } } void ini1_print(ini1_ctx_t *ctx) { printf("INI1:\n"); printf(" Number of Processes: %02"PRIx32"\n", ctx->header->num_processes); printf(" Size: %08"PRIx32"\n", ctx->header->size); printf("\n"); for (unsigned int i = 0; i < ctx->header->num_processes; i++) { printf("Process %02"PRIx32":\n", i); kip1_print(&ctx->kips[i], 1); printf("\n"); } printf("\n"); } void ini1_save(ini1_ctx_t *ctx) { filepath_t *dirpath = NULL; if (ctx->tool_ctx->file_type == FILETYPE_INI1 && ctx->tool_ctx->settings.out_dir_path.enabled) { dirpath = &ctx->tool_ctx->settings.out_dir_path.path; } if (dirpath == NULL || dirpath->valid != VALIDITY_VALID) { dirpath = &ctx->tool_ctx->settings.ini1_dir_path; } if (dirpath != NULL && dirpath->valid == VALIDITY_VALID) { os_makedir(dirpath->os_path); for (unsigned int i = 0; i < ctx->header->num_processes; i++) { char padded_name[0x20]; memset(&padded_name, 0, sizeof(padded_name)); memcpy(&padded_name, ctx->kips[i].header->name, sizeof(ctx->kips[i].header->name)); strcat(padded_name, ".kip1"); printf("Saving %s to %s/%s...\n", padded_name, dirpath->char_path, padded_name); save_buffer_to_directory_file(ctx->kips[i].header, kip1_get_size(&ctx->kips[i]), dirpath, padded_name); if (ctx->tool_ctx->action & ACTION_SAVEINIJSON) { printf("SAVING INI JSON!\n"); memset(&padded_name, 0, sizeof(padded_name)); memcpy(&padded_name, ctx->kips[i].header->name, sizeof(ctx->kips[i].header->name)); strcat(padded_name, ".json"); filepath_t json_path; filepath_init(&json_path); filepath_copy(&json_path, dirpath); filepath_append(&json_path, padded_name); FILE *f_json = os_fopen(json_path.os_path, OS_MODE_WRITE); if (f_json == NULL) { fprintf(stderr, "Failed to open %s!\n", json_path.char_path); return; } const char *json = kip1_get_json(&ctx->kips[i]); if (fwrite(json, 1, strlen(json), f_json) != strlen(json)) { fprintf(stderr, "Failed to write JSON file!\n"); exit(EXIT_FAILURE); } fclose(f_json); } } } } char *kip1_get_json(kip1_ctx_t *ctx) { cJSON *kip_json = cJSON_CreateObject(); char *output_str = NULL; char work_buffer[0x300] = {0}; /* Add KIP1 header fields. */ strcpy(work_buffer, ctx->header->name); cJSON_AddStringToObject(kip_json, "name", work_buffer); cJSON_AddU64ToObject(kip_json, "title_id", ctx->header->title_id); cJSON_AddU32ToObject(kip_json, "main_thread_stack_size", ctx->header->section_headers[1].attribute); cJSON_AddNumberToObject(kip_json, "main_thread_priority", ctx->header->main_thread_priority); cJSON_AddNumberToObject(kip_json, "default_cpu_id", ctx->header->default_core); cJSON_AddNumberToObject(kip_json, "process_category", ctx->header->process_category); /* Add KAC. */ cJSON *kac_json = kac_get_json(ctx->header->capabilities, sizeof(ctx->header->capabilities) / sizeof(uint32_t)); cJSON_AddItemToObject(kip_json, "kernel_capabilities", kac_json); output_str = cJSON_Print(kip_json); cJSON_Delete(kip_json); return output_str; } static void kip1_blz_uncompress(void *hdr_end) { uint32_t addl_size = ((uint32_t *)hdr_end)[-1]; uint32_t header_size = ((uint32_t *)hdr_end)[-2]; uint32_t cmp_and_hdr_size = ((uint32_t *)hdr_end)[-3]; unsigned char *cmp_start = (unsigned char *)(((uintptr_t)hdr_end) - cmp_and_hdr_size); uint32_t cmp_ofs = cmp_and_hdr_size - header_size; uint32_t out_ofs = cmp_and_hdr_size + addl_size; while (out_ofs) { unsigned char control = cmp_start[--cmp_ofs]; for (unsigned int i = 0; i < 8; i++) { if (control & 0x80) { if (cmp_ofs < 2) { fprintf(stderr, "KIP1 decompression out of bounds!\n"); exit(EXIT_FAILURE); } cmp_ofs -= 2; uint16_t seg_val = ((unsigned int)cmp_start[cmp_ofs+1] << 8) | cmp_start[cmp_ofs]; uint32_t seg_size = ((seg_val >> 12) & 0xF) + 3; uint32_t seg_ofs = (seg_val & 0x0FFF) + 3; if (out_ofs < seg_size) { /* Kernel restricts segment copy to stay in bounds. */ seg_size = out_ofs; } out_ofs -= seg_size; for (unsigned int j = 0; j < seg_size; j++) { cmp_start[out_ofs + j] = cmp_start[out_ofs + j + seg_ofs]; } } else { /* Copy directly. */ if (cmp_ofs < 1) { fprintf(stderr, "KIP1 decompression out of bounds!\n"); exit(EXIT_FAILURE); } cmp_start[--out_ofs] = cmp_start[--cmp_ofs]; } control <<= 1; if (out_ofs == 0) { return; } } } } static void *kip1_uncompress(kip1_ctx_t *ctx, uint64_t *size) { /* Make new header with correct sizes, fixed flags. */ kip1_header_t new_header = *ctx->header; for (unsigned int i = 0; i < 3; i++) { new_header.section_headers[i].compressed_size = new_header.section_headers[i].out_size; } new_header.flags &= 0xF8; *size = kip1_get_size_from_header(&new_header); unsigned char *new_kip = calloc(1, *size); if (new_kip == NULL) { fprintf(stderr, "Failed to allocate uncompressed KIP1!\n"); exit(EXIT_FAILURE); } *((kip1_header_t *)new_kip) = new_header; uint64_t new_offset = 0x100; uint64_t old_offset = 0x100; for (unsigned int i = 0; i < 3; i++) { // Copy in section data */ memcpy(new_kip + new_offset, (unsigned char *)ctx->header + old_offset, ctx->header->section_headers[i].compressed_size); kip1_blz_uncompress(new_kip + new_offset + ctx->header->section_headers[i].compressed_size); new_offset += ctx->header->section_headers[i].out_size; old_offset += ctx->header->section_headers[i].compressed_size; } return new_kip; } void kip1_process(kip1_ctx_t *ctx) { /* Read *just* safe amount. */ kip1_header_t raw_header; fseeko64(ctx->file, 0, SEEK_SET); if (fread(&raw_header, 1, sizeof(raw_header), ctx->file) != sizeof(raw_header)) { fprintf(stderr, "Failed to read KIP1 header!\n"); exit(EXIT_FAILURE); } if (raw_header.magic != MAGIC_KIP1) { printf("Error: KIP1 is corrupt!\n"); exit(EXIT_FAILURE); } uint64_t size = kip1_get_size_from_header(&raw_header); ctx->header = malloc(size); if (ctx->header == NULL) { fprintf(stderr, "Failed to allocate KIP1!\n"); exit(EXIT_FAILURE); } fseeko64(ctx->file, 0, SEEK_SET); if (fread(ctx->header, 1, size, ctx->file) != size) { fprintf(stderr, "Failed to read KIP1!\n"); exit(EXIT_FAILURE); } if (ctx->tool_ctx->action & ACTION_INFO) { kip1_print(ctx, 0); } if (ctx->tool_ctx->action & ACTION_EXTRACT) { kip1_save(ctx); } } void kip1_print(kip1_ctx_t *ctx, int suppress) { if (!suppress) printf("KIP1:\n"); printf(" Title ID: %016"PRIx64"\n", ctx->header->title_id); char padded_name[13]; memset(&padded_name, 0, sizeof(padded_name)); memcpy(&padded_name, ctx->header->name, sizeof(ctx->header->name)); printf(" Name: %s\n", padded_name); printf(" Process Category: %s\n", npdm_get_proc_category(ctx->header->process_category)); printf(" Main Thread Priority: %"PRId8"\n", ctx->header->main_thread_priority); printf(" Default CPU Core: %"PRId8"\n", ctx->header->default_core); printf(" Is 64 Bit: %s\n", (ctx->header->flags & (1 << 3)) ? "True" : "False"); printf(" Is Address Space 64 Bit: %s\n", (ctx->header->flags & (1 << 4)) ? "True" : "False"); printf(" Sections:\n"); printf(" .text: %08"PRIx32"-%08"PRIx32"\n", ctx->header->section_headers[0].out_offset, ctx->header->section_headers[0].out_offset + align(ctx->header->section_headers[0].out_size, 0x1000)); printf(" .rodata: %08"PRIx32"-%08"PRIx32"\n", ctx->header->section_headers[1].out_offset, ctx->header->section_headers[1].out_offset + align(ctx->header->section_headers[1].out_size, 0x1000)); printf(" .rwdata: %08"PRIx32"-%08"PRIx32"\n", ctx->header->section_headers[2].out_offset, ctx->header->section_headers[2].out_offset + align(ctx->header->section_headers[2].out_size, 0x1000)); printf(" .bss: %08"PRIx32"-%08"PRIx32"\n", ctx->header->section_headers[3].out_offset, ctx->header->section_headers[3].out_offset + align(ctx->header->section_headers[3].out_size, 0x1000)); printf(" Kernel Access Control:\n"); kac_print(ctx->header->capabilities, 0x20); printf("\n"); } void kip1_save(kip1_ctx_t *ctx) { filepath_t *json_path = &ctx->tool_ctx->settings.npdm_json_path; filepath_t *uncmp_path = &ctx->tool_ctx->settings.uncompressed_path; if (ctx->tool_ctx->file_type == FILETYPE_KIP1) { if (json_path->valid == VALIDITY_VALID) { FILE *f_json = os_fopen(json_path->os_path, OS_MODE_WRITE); if (f_json == NULL) { fprintf(stderr, "Failed to open %s!\n", json_path->char_path); return; } char *json = kip1_get_json(ctx); if (json == NULL) { fprintf(stderr, "Failed to allocate KIP1 JSON\n"); exit(EXIT_FAILURE); } if (fwrite(json, 1, strlen(json), f_json) != strlen(json)) { fprintf(stderr, "Failed to write JSON file!\n"); exit(EXIT_FAILURE); } cJSON_free(json); fclose(f_json); } else if (uncmp_path->valid == VALIDITY_VALID) { FILE *f_uncmp = os_fopen(uncmp_path->os_path, OS_MODE_WRITE); if (f_uncmp == NULL) { fprintf(stderr, "Failed to open %s!\n", uncmp_path->char_path); return; } uint64_t sz = 0; void *uncmp = kip1_uncompress(ctx, &sz); if (fwrite(uncmp, 1, sz, f_uncmp) != sz) { fprintf(stderr, "Failed to write uncompressed kip!\n"); exit(EXIT_FAILURE); } free(uncmp); fclose(f_uncmp); } } }