//! This benchmarks Fast-Fourier Transform (FFT). //! Since it is over a finite field, it is actually the Number Theoretical //! Transform (NNT). It uses the `Fr` scalar field from the BN256 curve. //! //! To run this benchmark: //! //! cargo bench --bench fft //! //! Caveat: The multicore benchmark assumes: //! 1. a multi-core system //! 2. that the `multicore` feature is enabled. It is by default. #[macro_use] extern crate criterion; use std::{ops::Range, time::SystemTime}; use criterion::{BenchmarkId, Criterion}; use group::ff::Field; use halo2curves::{bn256::Fr as Scalar, fft::best_fft}; use rand::{RngCore, SeedableRng}; use rand_xorshift::XorShiftRng; const RANGE: Range = 3..19; const SEED: [u8; 16] = [ 0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06, 0xbc, 0xe5, ]; fn generate_data(k: u32, mut rng: impl RngCore) -> Vec { let n = 1 << k; let timer = SystemTime::now(); println!("\n\nGenerating 2^{k} = {n} values..",); let data: Vec = (0..n).map(|_| Scalar::random(&mut rng)).collect(); let end = timer.elapsed().unwrap(); println!( "Generating 2^{k} = {n} values took: {} sec.\n\n", end.as_secs() ); data } fn fft(c: &mut Criterion) { let max_k = RANGE.max().unwrap_or(16); let mut rng = XorShiftRng::from_seed(SEED); let mut data = generate_data(max_k, &mut rng); let omega = Scalar::random(&mut rng); let mut group = c.benchmark_group("fft"); for k in RANGE { group.bench_function(BenchmarkId::new("k", k), |b| { let n = 1 << k; assert!(n <= data.len()); b.iter(|| { best_fft(&mut data[..n], omega, k); }); }); } group.finish(); } criterion_group!(benches, fft); criterion_main!(benches);