#!/usr/bin/env python """ .. module:: inference :synopsis: An implementation of the Hindley Milner type checking algorithm based on the Scala code by Andrew Forrest, the Perl code by Nikita Borisov and the paper "Basic Polymorphic Typechecking" by Cardelli. .. moduleauthor:: Robert Smallshire """ from __future__ import print_function import copy # =======================================================# # Class definitions for the abstract syntax tree nodes # which comprise the little language for which types # will be inferred class Lambda(object): """Lambda abstraction""" def __init__(self, v, body): self.v = v self.body = body def __str__(self): return "(fn {v} => {body})".format(v=self.v, body=self.body) class Identifier(object): """Identifier""" def __init__(self, name): self.name = name def __str__(self): return self.name class Apply(object): """Function application""" def __init__(self, fn, arg): self.fn = fn self.arg = arg def __str__(self): return "({fn} {arg})".format(fn=self.fn, arg=self.arg) class Let(object): """Let binding""" def __init__(self, v, defn, body): self.v = v self.defn = defn self.body = body def __str__(self): return "(let {v} = {defn} in {body})".format(v=self.v, defn=self.defn, body=self.body) class Letrec(object): """Letrec binding""" def __init__(self, v, defn, body): self.v = v self.defn = defn self.body = body def __str__(self): return "(letrec {v} = {defn} in {body})".format(v=self.v, defn=self.defn, body=self.body) # =======================================================# # Exception types class InferenceError(Exception): """Raised if the type inference algorithm cannot infer types successfully""" def __init__(self, message): self.__message = message message = property(lambda self: self.__message) def __str__(self): return str(self.message) class ParseError(Exception): """Raised if the type environment supplied for is incomplete""" def __init__(self, message): self.__message = message message = property(lambda self: self.__message) def __str__(self): return str(self.message) # =======================================================# # Types and type constructors class TypeVariable(object): """A type variable standing for an arbitrary type. All type variables have a unique id, but names are only assigned lazily, when required. """ next_variable_id = 0 def __init__(self): self.id = TypeVariable.next_variable_id TypeVariable.next_variable_id += 1 self.instance = None self.__name = None next_variable_name = 'a' @property def name(self): """Names are allocated to TypeVariables lazily, so that only TypeVariables present """ if self.__name is None: self.__name = TypeVariable.next_variable_name TypeVariable.next_variable_name = chr(ord(TypeVariable.next_variable_name) + 1) return self.__name def __str__(self): if self.instance is not None: return str(self.instance) else: return self.name def __repr__(self): return "TypeVariable(id = {0})".format(self.id) def copy(self): b = TypeVariable.__new__(TypeVariable) b.id = self.id b.instance = self.instance b.__name = self.__name return b class TypeOperator(object): """An n-ary type constructor which builds a new type from old""" def __init__(self, name, types): self.name = name self.types = types def __str__(self): num_types = len(self.types) if num_types == 0: return self.name elif num_types == 2: return "({0} {1} {2})".format(str(self.types[0]), self.name, str(self.types[1])) else: return "{0} {1}" .format(self.name, ' '.join(self.types)) def copy(self): b = TypeOperator.__new__(TypeOperator) b.types = self.types b.name = self.name return b class Function(TypeOperator): """A binary type constructor which builds function types""" def __init__(self, from_type, to_type): super(Function, self).__init__("->", [from_type, to_type]) # Basic types are constructed with a nullary type constructor Integer = TypeOperator("int", []) # Basic integer Bool = TypeOperator("bool", []) # Basic bool # =======================================================# # Type inference machinery def analyse(node, env, non_generic=None): """Computes the type of the expression given by node. The type of the node is computed in the context of the context of the supplied type environment env. Data types can be introduced into the language simply by having a predefined set of identifiers in the initial environment. environment; this way there is no need to change the syntax or, more importantly, the type-checking program when extending the language. Args: node: The root of the abstract syntax tree. env: The type environment is a mapping of expression identifier names to type assignments. to type assignments. non_generic: A set of non-generic variables, or None Returns: The computed type of the expression. Raises: InferenceError: The type of the expression could not be inferred, for example if it is not possible to unify two types such as Integer and Bool ParseError: The abstract syntax tree rooted at node could not be parsed """ if non_generic is None: non_generic = set() if isinstance(node, Identifier): return get_type(node.name, env, non_generic) elif isinstance(node, Apply): fun_type = analyse(node.fn, env, non_generic) arg_type = analyse(node.arg, env, non_generic) result_type = TypeVariable() unify(Function(arg_type, result_type), fun_type) return result_type elif isinstance(node, Lambda): arg_type = TypeVariable() new_env = env.copy() new_env[node.v] = arg_type new_non_generic = non_generic.copy() new_non_generic.add(arg_type) result_type = analyse(node.body, new_env, new_non_generic) return Function(arg_type, result_type) elif isinstance(node, Let): defn_type = analyse(node.defn, env, non_generic) new_env = env.copy() new_env[node.v] = defn_type return analyse(node.body, new_env, non_generic) elif isinstance(node, Letrec): new_type = TypeVariable() new_env = env.copy() new_env[node.v] = new_type new_non_generic = non_generic.copy() new_non_generic.add(new_type) defn_type = analyse(node.defn, new_env, new_non_generic) unify(new_type, defn_type) return analyse(node.body, new_env, non_generic) assert 0, "Unhandled syntax node {0}".format(type(node)) def get_type(name, env, non_generic): """Get the type of identifier name from the type environment env. Args: name: The identifier name env: The type environment mapping from identifier names to types non_generic: A set of non-generic TypeVariables Raises: ParseError: Raised if name is an undefined symbol in the type environment. """ if name in env: return fresh(env[name], non_generic) elif is_integer_literal(name): return Integer else: raise ParseError("Undefined symbol {0}".format(name)) def fresh(t, non_generic): """Makes a copy of a type expression. The type t is copied. The the generic variables are duplicated and the non_generic variables are shared. Args: t: A type to be copied. non_generic: A set of non-generic TypeVariables """ mappings = {} # A mapping of TypeVariables to TypeVariables def freshrec(tp): p = prune(tp) if isinstance(p, TypeVariable): if is_generic(p, non_generic): if p not in mappings: mappings[p] = TypeVariable() return mappings[p] else: return p elif isinstance(p, TypeOperator): return TypeOperator(p.name, [freshrec(x) for x in p.types]) return freshrec(t) def unify(t1, t2): """Unify the two types t1 and t2. Makes the types t1 and t2 the same. Args: t1: The first type to be made equivalent t2: The second type to be be equivalent Returns: None Raises: InferenceError: Raised if the types cannot be unified. """ a = prune(t1) b = prune(t2) if isinstance(a, TypeVariable): if a != b: if occurs_in_type(a, b): raise InferenceError("recursive unification") a.instance = b elif isinstance(a, TypeOperator) and isinstance(b, TypeVariable): unify(b, a) elif isinstance(a, TypeOperator) and isinstance(b, TypeOperator): if a.name != b.name or len(a.types) != len(b.types): raise InferenceError("Type mismatch: {0} != {1}".format(str(a), str(b))) for p, q in zip(a.types, b.types): unify(p, q) else: assert 0, "Not unified" def prune(t): """Returns the currently defining instance of t. As a side effect, collapses the list of type instances. The function Prune is used whenever a type expression has to be inspected: it will always return a type expression which is either an uninstantiated type variable or a type operator; i.e. it will skip instantiated variables, and will actually prune them from expressions to remove long chains of instantiated variables. Args: t: The type to be pruned Returns: An uninstantiated TypeVariable or a TypeOperator """ if isinstance(t, TypeVariable): if t.instance is not None: t.instance = prune(t.instance) return t.instance return t def is_generic(v, non_generic): """Checks whether a given variable occurs in a list of non-generic variables Note that a variables in such a list may be instantiated to a type term, in which case the variables contained in the type term are considered non-generic. Note: Must be called with v pre-pruned Args: v: The TypeVariable to be tested for genericity non_generic: A set of non-generic TypeVariables Returns: True if v is a generic variable, otherwise False """ return not occurs_in(v, non_generic) def occurs_in_type(v, type2): """Checks whether a type variable occurs in a type expression. Note: Must be called with v pre-pruned Args: v: The TypeVariable to be tested for type2: The type in which to search Returns: True if v occurs in type2, otherwise False """ # type2 = type2.copy() pruned_type2 = prune(type2) if pruned_type2 == v: return True elif isinstance(pruned_type2, TypeOperator): return occurs_in(v, pruned_type2.types) return False def occurs_in(t, types): """Checks whether a types variable occurs in any other types. Args: t: The TypeVariable to be tested for types: The sequence of types in which to search Returns: True if t occurs in any of types, otherwise False """ return any(occurs_in_type(t, t2) for t2 in types) def is_integer_literal(name): """Checks whether name is an integer literal string. Args: name: The identifier to check Returns: True if name is an integer literal, otherwise False """ result = True try: int(name) except ValueError: result = False return result # ==================================================================# # Example code to exercise the above def try_exp(env, node): """Try to evaluate a type printing the result or reporting errors. Args: env: The type environment in which to evaluate the expression. node: The root node of the abstract syntax tree of the expression. Returns: None """ print(str(node) + " : ", end=' ') try: t = analyse(node, env) print(str(t)) except (ParseError, InferenceError) as e: print(e) def main(): """The main example program. Sets up some predefined types using the type constructors TypeVariable, TypeOperator and Function. Creates a list of example expressions to be evaluated. Evaluates the expressions, printing the type or errors arising from each. Returns: None """ var1 = TypeVariable() var2 = TypeVariable() pair_type = TypeOperator("*", (var1, var2)) var3 = TypeVariable() my_env = {"pair": Function(var1, Function(var2, pair_type)), "true": Bool, "cond": Function(Bool, Function(var3, Function(var3, var3))), "zero": Function(Integer, Bool), "pred": Function(Integer, Integer), "times": Function(Integer, Function(Integer, Integer))} pair = Apply(Apply(Identifier("pair"), Apply(Identifier("f"), Identifier("4"))), Apply(Identifier("f"), Identifier("true"))) examples = [ # factorial Letrec("factorial", # letrec factorial = Lambda("n", # fn n => Apply( Apply( # cond (zero n) 1 Apply(Identifier("cond"), # cond (zero n) Apply(Identifier("zero"), Identifier("n"))), Identifier("1")), Apply( # times n Apply(Identifier("times"), Identifier("n")), Apply(Identifier("factorial"), Apply(Identifier("pred"), Identifier("n"))) ) ) ), # in Apply(Identifier("factorial"), Identifier("5")) ), # Should fail: # fn x => (pair(x(3) (x(true))) Lambda("x", Apply( Apply(Identifier("pair"), Apply(Identifier("x"), Identifier("3"))), Apply(Identifier("x"), Identifier("true")))), # pair(f(3), f(true)) Apply( Apply(Identifier("pair"), Apply(Identifier("f"), Identifier("4"))), Apply(Identifier("f"), Identifier("true"))), # let f = (fn x => x) in ((pair (f 4)) (f true)) Let("f", Lambda("x", Identifier("x")), pair), # fn f => f f (fail) Lambda("f", Apply(Identifier("f"), Identifier("f"))), # let g = fn f => 5 in g g Let("g", Lambda("f", Identifier("5")), Apply(Identifier("g"), Identifier("g"))), # example that demonstrates generic and non-generic variables: # fn g => let f = fn x => g in pair (f 3, f true) Lambda("g", Let("f", Lambda("x", Identifier("g")), Apply( Apply(Identifier("pair"), Apply(Identifier("f"), Identifier("3")) ), Apply(Identifier("f"), Identifier("true"))))), # Function composition # fn f (fn g (fn arg (f g arg))) Lambda("f", Lambda("g", Lambda("arg", Apply(Identifier("g"), Apply(Identifier("f"), Identifier("arg")))))) ] for example in examples: try_exp(my_env, example) if __name__ == '__main__': main()