[package] name = "hnsw" version = "0.11.0" authors = ["Geordon Worley "] edition = "2018" description = "Fast approximate nearest neighbors" keywords = ["hamming", "distance", "nearest", "neighbor", "search"] categories = ["algorithms", "data-structures", "science"] repository = "https://github.com/rust-cv/hnsw" documentation = "https://docs.rs/hnsw/" license = "MIT" readme = "README.md" [features] serde1 = ["smallvec/serde", "serde"] [[bench]] name = "benches" harness = false [dependencies] space = { version = "0.17.0", default-features = false, features = ["alloc"] } rand_core = "0.6.3" hashbrown = "0.11.2" serde = { version = "1.0.126", default-features = false, features = ["derive"], optional = true } libm = "0.2.1" smallvec = { version = "1.6.1", features = ["const_generics"] } ahash = { version = "0.7.4", default-features = false } num-traits = { version = "0.2.14", default-features = false } [dev-dependencies] space = { version = "0.17.0", features = ["serde", "alloc"] } rand_pcg = { version = "0.3.1", features = ["serde1"] } hamming-heap = "0.4.1" rand = "0.8.4" criterion = "0.3.4" gnuplot = "0.0.37" structopt = "0.3.22" easybench = "1.1.0" itertools = "0.10.1" float-ord = "0.3.1" byteorder = "1.4.3" serde_json = "1.0.64" num-traits = "0.2.14" bitarray = { version = "0.9.1", default-features = false, features = ["space"] } [profile.dev] opt-level = 3 [profile.test] # The tests take a very long time without optimization. opt-level = 3 [profile.release] codegen-units = 1 # This is here so we can generate flamegraphs. debug = true [package.metadata.docs.rs] all-features = true