English | Français | 日本語 | 한국어 | Русский | 中文

# Hora **[[Homepage](http://horasearch.com/)]** **[[Document](https://horasearch.com/doc)]** **[[Examples](https://horasearch.com/doc/example.html)]** **_Hora Search Everywhere!_** Hora is an **approximate nearest neighbor search algorithm** ([wiki](https://en.wikipedia.org/wiki/Nearest_neighbor_search)) library. We implement all code in `Rust🦀` for reliability, high level abstraction and high speeds comparable to `C++`. Hora, **`「ほら」`** in Japanese, sounds like `[hōlə]`, and means `Wow`, `You see!` or `Look at that!`. The name is inspired by a famous Japanese song **`「小さな恋のうた」`**. # Demos **👩 Face-Match [[online demo](https://horasearch.com/#Demos)], have a try!**
**🍷 Dream wine comments search [[online demo](https://horasearch.com/#Demos)], have a try!**
# Features - **Performant** ⚡️ - **SIMD-Accelerated ([packed_simd](https://github.com/rust-lang/packed_simd))** - **Stable algorithm implementation** - **Multiple threads design** - **Supports Multiple Languages** ☄️ - `Python` - `Javascript` - `Java` - `Go` (WIP) - `Ruby` (WIP) - `Swift` (WIP) - `R` (WIP) - `Julia` (WIP) - **Can also be used as a service** - **Supports Multiple Indexes** 🚀 - `Hierarchical Navigable Small World Graph Index (HNSWIndex)` ([details](https://arxiv.org/abs/1603.09320)) - `Satellite System Graph (SSGIndex)` ([details](https://arxiv.org/abs/1907.06146)) - `Product Quantization Inverted File(PQIVFIndex)` ([details](https://lear.inrialpes.fr/pubs/2011/JDS11/jegou_searching_with_quantization.pdf)) - `Random Projection Tree(RPTIndex)` (LSH, WIP) - `BruteForce (BruteForceIndex)` (naive implementation with SIMD) - **Portable** 💼 - Supports `WebAssembly` - Supports `Windows`, `Linux` and `OS X` - Supports `IOS` and `Android` (WIP) - Supports `no_std` (WIP, partial) - **No** heavy dependencies, such as `BLAS` - **Reliability** 🔒 - `Rust` compiler secures all code - Memory managed by `Rust` for all language libraries such as `Python's` - Broad testing coverage - **Supports Multiple Distances** 🧮 - `Dot Product Distance` - ![equation](https://latex.codecogs.com/gif.latex?D%28x%2Cy%29%20%3D%20%5Csum%7B%28x*y%29%7D) - `Euclidean Distance` - ![equation](https://latex.codecogs.com/gif.latex?D%28x%2Cy%29%20%3D%20%5Csqrt%7B%5Csum%7B%28x-y%29%5E2%7D%7D) - `Manhattan Distance` - ![equation](https://latex.codecogs.com/gif.latex?D%28x%2Cy%29%20%3D%20%5Csum%7B%7C%28x-y%29%7C%7D) - `Cosine Similarity` - ![equation](https://latex.codecogs.com/gif.latex?D%28x%2Cy%29%20%3D%20%5Cfrac%7Bx%20*y%7D%7B%7C%7Cx%7C%7C*%7C%7Cy%7C%7C%7D) - **Productive** ⭐ - Well documented - Elegant, simple and easy to learn API # Installation **`Rust`** in `Cargo.toml` ```toml [dependencies] hora = "0.1.1" ``` **`Python`** ```Bash $ pip install horapy ``` **`Javascript (WebAssembly)`** ```Bash $ npm i horajs ``` **`Building from source`** ```bash $ git clone https://github.com/hora-search/hora $ cargo build ``` # Benchmarks by `aws t2.medium (CPU: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz)` [more information](https://github.com/hora-search/ann-benchmarks) # Examples **`Rust` example** [[more info](https://github.com/hora-search/hora/tree/main/examples)] ```Rust use hora::core::ann_index::ANNIndex; use rand::{thread_rng, Rng}; use rand_distr::{Distribution, Normal}; pub fn demo() { let n = 1000; let dimension = 64; // make sample points let mut samples = Vec::with_capacity(n); let normal = Normal::new(0.0, 10.0).unwrap(); for _i in 0..n { let mut sample = Vec::with_capacity(dimension); for _j in 0..dimension { sample.push(normal.sample(&mut rand::thread_rng())); } samples.push(sample); } // init index let mut index = hora::index::hnsw_idx::HNSWIndex::::new( dimension, &hora::index::hnsw_params::HNSWParams::::default(), ); for (i, sample) in samples.iter().enumerate().take(n) { // add point index.add(sample, i).unwrap(); } index.build(hora::core::metrics::Metric::Euclidean).unwrap(); let mut rng = thread_rng(); let target: usize = rng.gen_range(0..n); // 523 has neighbors: [523, 762, 364, 268, 561, 231, 380, 817, 331, 246] println!( "{:?} has neighbors: {:?}", target, index.search(&samples[target], 10) // search for k nearest neighbors ); } ``` thank @vaaaaanquish for this complete pure `Rust 🦀` image search [example](https://github.com/vaaaaanquish/rust-ann-search-example), For more information about this example, you can click [Pure Rust な近似最近傍探索ライブラリ hora を用いた画像検索を実装する](https://vaaaaaanquish.hatenablog.com/entry/2021/08/10/065117) **`Python` example** [[more info](https://github.com/hora-search/horapy)] ```Python import numpy as np from horapy import HNSWIndex dimension = 50 n = 1000 # init index instance index = HNSWIndex(dimension, "usize") samples = np.float32(np.random.rand(n, dimension)) for i in range(0, len(samples)): # add node index.add(np.float32(samples[i]), i) index.build("euclidean") # build index target = np.random.randint(0, n) # 410 in Hora ANNIndex (dimension: 50, dtype: usize, max_item: 1000000, n_neigh: 32, n_neigh0: 64, ef_build: 20, ef_search: 500, has_deletion: False) # has neighbors: [410, 736, 65, 36, 631, 83, 111, 254, 990, 161] print("{} in {} \nhas neighbors: {}".format( target, index, index.search(samples[target], 10))) # search ``` **`JavaScript` example** [[more info](https://github.com/hora-search/hora-wasm)] ```JavaScript import * as horajs from "horajs"; const demo = () => { const dimension = 50; var bf_idx = horajs.BruteForceIndexUsize.new(dimension); // var hnsw_idx = horajs.HNSWIndexUsize.new(dimension, 1000000, 32, 64, 20, 500, 16, false); for (var i = 0; i < 1000; i++) { var feature = []; for (var j = 0; j < dimension; j++) { feature.push(Math.random()); } bf_idx.add(feature, i); // add point } bf_idx.build("euclidean"); // build index var feature = []; for (var j = 0; j < dimension; j++) { feature.push(Math.random()); } console.log("bf result", bf_idx.search(feature, 10)); //bf result Uint32Array(10) [704, 113, 358, 835, 408, 379, 117, 414, 808, 826] } (async () => { await horajs.default(); await horajs.init_env(); demo(); })(); ``` **`Java` example** [[more info](https://github.com/hora-search/hora-java)] ```Java public void demo() { final int dimension = 2; final float variance = 2.0f; Random fRandom = new Random(); BruteForceIndex bruteforce_idx = new BruteForceIndex(dimension); // init index instance List tmp = new ArrayList<>(); for (int i = 0; i < 5; i++) { for (int p = 0; p < 10; p++) { float[] features = new float[dimension]; for (int j = 0; j < dimension; j++) { features[j] = getGaussian(fRandom, (float) (i * 10), variance); } bruteforce_idx.add("bf", features, i * 10 + p); // add point tmp.add(features); } } bruteforce_idx.build("bf", "euclidean"); // build index int search_index = fRandom.nextInt(tmp.size()); // nearest neighbor search int[] result = bruteforce_idx.search("bf", 10, tmp.get(search_index)); // [main] INFO com.hora.app.ANNIndexTest - demo bruteforce_idx[7, 8, 0, 5, 3, 9, 1, 6, 4, 2] log.info("demo bruteforce_idx" + Arrays.toString(result)); } private static float getGaussian(Random fRandom, float aMean, float variance) { float r = (float) fRandom.nextGaussian(); return aMean + r * variance; } ``` # Roadmap - [ ] Full test coverage - [ ] Implement [EFANNA](http://arxiv.org/abs/1609.07228) algorithm to achieve faster KNN graph building - [ ] Swift support and iOS/macOS deployment example - [ ] Support `R` - [ ] support `mmap` # Related Projects and Comparison - [Faiss](https://github.com/facebookresearch/faiss), [Annoy](https://github.com/spotify/annoy), [ScaNN](https://github.com/google-research/google-research/tree/master/scann): - **`Hora`'s implementation is strongly inspired by these libraries.** - `Faiss` focuses more on the GPU scenerio, and `Hora` is lighter than Faiss (**no heavy dependencies)**. - `Hora` expects to support more languages, and everything related to performance will be implemented by Rust🦀. - `Annoy` only supports the `LSH (Random Projection)` algorithm. - `ScaNN` and `Faiss` are less user-friendly, (e.g. lack of documentation). - Hora is **ALL IN RUST** 🦀. - [Milvus](https://github.com/milvus-io/milvus), [Vald](https://github.com/vdaas/vald), [Jina AI](https://github.com/jina-ai/jina) - `Milvus` and `Vald` also support multiple languages, but serve as a service instead of a library - `Milvus` is built upon some libraries such as `Faiss`, while `Hora` is a library with all the algorithms implemented itself # Contribute **We appreciate your participation!** We are glad to have you participate, any contributions are welcome, including documentations and tests. You can create a `Pull Request` or `Issue` on GitHub, and we will review it as soon as possible. We use GitHub issues for tracking suggestions and bugs. #### Clone the repo ```bash git clone https://github.com/hora-search/hora ``` #### Build ```bash cargo build ``` #### Test ```bash cargo test --lib ``` #### Try the changes ```bash cd examples cargo run ``` # License The entire repository is licensed under the [Apache License](https://github.com/hora-search/hora/blob/main/LICENSE).