# Hora
**[[Homepage](http://horasearch.com/)]** **[[Document](https://horasearch.com/doc)]** **[[Examples](https://horasearch.com/doc/example.html)]**
**_Hora Search Everywhere!_**
Hora is an **approximate nearest neighbor search algorithm** ([wiki](https://en.wikipedia.org/wiki/Nearest_neighbor_search)) library. We implement all code in `Rust🦀` for reliability, high level abstraction and high speeds comparable to `C++`.
Hora, **`「ほら」`** in Japanese, sounds like `[hōlə]`, and means `Wow`, `You see!` or `Look at that!`. The name is inspired by a famous Japanese song **`「小さな恋のうた」`**.
# Demos
**👩 Face-Match [[online demo](https://horasearch.com/#Demos)], have a try!**
**🍷 Dream wine comments search [[online demo](https://horasearch.com/#Demos)], have a try!**
# Features
- **Performant** ⚡️
- **SIMD-Accelerated ([packed_simd](https://github.com/rust-lang/packed_simd))**
- **Stable algorithm implementation**
- **Multiple threads design**
- **Supports Multiple Languages** ☄️
- `Python`
- `Javascript`
- `Java`
- `Go` (WIP)
- `Ruby` (WIP)
- `Swift` (WIP)
- `R` (WIP)
- `Julia` (WIP)
- **Can also be used as a service**
- **Supports Multiple Indexes** 🚀
- `Hierarchical Navigable Small World Graph Index (HNSWIndex)` ([details](https://arxiv.org/abs/1603.09320))
- `Satellite System Graph (SSGIndex)` ([details](https://arxiv.org/abs/1907.06146))
- `Product Quantization Inverted File(PQIVFIndex)` ([details](https://lear.inrialpes.fr/pubs/2011/JDS11/jegou_searching_with_quantization.pdf))
- `Random Projection Tree(RPTIndex)` (LSH, WIP)
- `BruteForce (BruteForceIndex)` (naive implementation with SIMD)
- **Portable** 💼
- Supports `WebAssembly`
- Supports `Windows`, `Linux` and `OS X`
- Supports `IOS` and `Android` (WIP)
- Supports `no_std` (WIP, partial)
- **No** heavy dependencies, such as `BLAS`
- **Reliability** 🔒
- `Rust` compiler secures all code
- Memory managed by `Rust` for all language libraries such as `Python's`
- Broad testing coverage
- **Supports Multiple Distances** 🧮
- `Dot Product Distance`
- ![equation](https://latex.codecogs.com/gif.latex?D%28x%2Cy%29%20%3D%20%5Csum%7B%28x*y%29%7D)
- `Euclidean Distance`
- ![equation](https://latex.codecogs.com/gif.latex?D%28x%2Cy%29%20%3D%20%5Csqrt%7B%5Csum%7B%28x-y%29%5E2%7D%7D)
- `Manhattan Distance`
- ![equation](https://latex.codecogs.com/gif.latex?D%28x%2Cy%29%20%3D%20%5Csum%7B%7C%28x-y%29%7C%7D)
- `Cosine Similarity`
- ![equation](https://latex.codecogs.com/gif.latex?D%28x%2Cy%29%20%3D%20%5Cfrac%7Bx%20*y%7D%7B%7C%7Cx%7C%7C*%7C%7Cy%7C%7C%7D)
- **Productive** ⭐
- Well documented
- Elegant, simple and easy to learn API
# Installation
**`Rust`**
in `Cargo.toml`
```toml
[dependencies]
hora = "0.1.1"
```
**`Python`**
```Bash
$ pip install horapy
```
**`Javascript (WebAssembly)`**
```Bash
$ npm i horajs
```
**`Building from source`**
```bash
$ git clone https://github.com/hora-search/hora
$ cargo build
```
# Benchmarks
by `aws t2.medium (CPU: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz)` [more information](https://github.com/hora-search/ann-benchmarks)
# Examples
**`Rust` example** [[more info](https://github.com/hora-search/hora/tree/main/examples)]
```Rust
use hora::core::ann_index::ANNIndex;
use rand::{thread_rng, Rng};
use rand_distr::{Distribution, Normal};
pub fn demo() {
let n = 1000;
let dimension = 64;
// make sample points
let mut samples = Vec::with_capacity(n);
let normal = Normal::new(0.0, 10.0).unwrap();
for _i in 0..n {
let mut sample = Vec::with_capacity(dimension);
for _j in 0..dimension {
sample.push(normal.sample(&mut rand::thread_rng()));
}
samples.push(sample);
}
// init index
let mut index = hora::index::hnsw_idx::HNSWIndex::::new(
dimension,
&hora::index::hnsw_params::HNSWParams::::default(),
);
for (i, sample) in samples.iter().enumerate().take(n) {
// add point
index.add(sample, i).unwrap();
}
index.build(hora::core::metrics::Metric::Euclidean).unwrap();
let mut rng = thread_rng();
let target: usize = rng.gen_range(0..n);
// 523 has neighbors: [523, 762, 364, 268, 561, 231, 380, 817, 331, 246]
println!(
"{:?} has neighbors: {:?}",
target,
index.search(&samples[target], 10) // search for k nearest neighbors
);
}
```
thank @vaaaaanquish for this complete pure `Rust 🦀` image search [example](https://github.com/vaaaaanquish/rust-ann-search-example), For more information about this example, you can click [Pure Rust な近似最近傍探索ライブラリ hora を用いた画像検索を実装する](https://vaaaaaanquish.hatenablog.com/entry/2021/08/10/065117)
**`Python` example** [[more info](https://github.com/hora-search/horapy)]
```Python
import numpy as np
from horapy import HNSWIndex
dimension = 50
n = 1000
# init index instance
index = HNSWIndex(dimension, "usize")
samples = np.float32(np.random.rand(n, dimension))
for i in range(0, len(samples)):
# add node
index.add(np.float32(samples[i]), i)
index.build("euclidean") # build index
target = np.random.randint(0, n)
# 410 in Hora ANNIndex (dimension: 50, dtype: usize, max_item: 1000000, n_neigh: 32, n_neigh0: 64, ef_build: 20, ef_search: 500, has_deletion: False)
# has neighbors: [410, 736, 65, 36, 631, 83, 111, 254, 990, 161]
print("{} in {} \nhas neighbors: {}".format(
target, index, index.search(samples[target], 10))) # search
```
**`JavaScript` example** [[more info](https://github.com/hora-search/hora-wasm)]
```JavaScript
import * as horajs from "horajs";
const demo = () => {
const dimension = 50;
var bf_idx = horajs.BruteForceIndexUsize.new(dimension);
// var hnsw_idx = horajs.HNSWIndexUsize.new(dimension, 1000000, 32, 64, 20, 500, 16, false);
for (var i = 0; i < 1000; i++) {
var feature = [];
for (var j = 0; j < dimension; j++) {
feature.push(Math.random());
}
bf_idx.add(feature, i); // add point
}
bf_idx.build("euclidean"); // build index
var feature = [];
for (var j = 0; j < dimension; j++) {
feature.push(Math.random());
}
console.log("bf result", bf_idx.search(feature, 10)); //bf result Uint32Array(10) [704, 113, 358, 835, 408, 379, 117, 414, 808, 826]
}
(async () => {
await horajs.default();
await horajs.init_env();
demo();
})();
```
**`Java` example** [[more info](https://github.com/hora-search/hora-java)]
```Java
public void demo() {
final int dimension = 2;
final float variance = 2.0f;
Random fRandom = new Random();
BruteForceIndex bruteforce_idx = new BruteForceIndex(dimension); // init index instance
List tmp = new ArrayList<>();
for (int i = 0; i < 5; i++) {
for (int p = 0; p < 10; p++) {
float[] features = new float[dimension];
for (int j = 0; j < dimension; j++) {
features[j] = getGaussian(fRandom, (float) (i * 10), variance);
}
bruteforce_idx.add("bf", features, i * 10 + p); // add point
tmp.add(features);
}
}
bruteforce_idx.build("bf", "euclidean"); // build index
int search_index = fRandom.nextInt(tmp.size());
// nearest neighbor search
int[] result = bruteforce_idx.search("bf", 10, tmp.get(search_index));
// [main] INFO com.hora.app.ANNIndexTest - demo bruteforce_idx[7, 8, 0, 5, 3, 9, 1, 6, 4, 2]
log.info("demo bruteforce_idx" + Arrays.toString(result));
}
private static float getGaussian(Random fRandom, float aMean, float variance) {
float r = (float) fRandom.nextGaussian();
return aMean + r * variance;
}
```
# Roadmap
- [ ] Full test coverage
- [ ] Implement [EFANNA](http://arxiv.org/abs/1609.07228) algorithm to achieve faster KNN graph building
- [ ] Swift support and iOS/macOS deployment example
- [ ] Support `R`
- [ ] support `mmap`
# Related Projects and Comparison
- [Faiss](https://github.com/facebookresearch/faiss), [Annoy](https://github.com/spotify/annoy), [ScaNN](https://github.com/google-research/google-research/tree/master/scann):
- **`Hora`'s implementation is strongly inspired by these libraries.**
- `Faiss` focuses more on the GPU scenerio, and `Hora` is lighter than Faiss (**no heavy dependencies)**.
- `Hora` expects to support more languages, and everything related to performance will be implemented by Rust🦀.
- `Annoy` only supports the `LSH (Random Projection)` algorithm.
- `ScaNN` and `Faiss` are less user-friendly, (e.g. lack of documentation).
- Hora is **ALL IN RUST** 🦀.
- [Milvus](https://github.com/milvus-io/milvus), [Vald](https://github.com/vdaas/vald), [Jina AI](https://github.com/jina-ai/jina)
- `Milvus` and `Vald` also support multiple languages, but serve as a service instead of a library
- `Milvus` is built upon some libraries such as `Faiss`, while `Hora` is a library with all the algorithms implemented itself
# Contribute
**We appreciate your participation!**
We are glad to have you participate, any contributions are welcome, including documentations and tests.
You can create a `Pull Request` or `Issue` on GitHub, and we will review it as soon as possible.
We use GitHub issues for tracking suggestions and bugs.
#### Clone the repo
```bash
git clone https://github.com/hora-search/hora
```
#### Build
```bash
cargo build
```
#### Test
```bash
cargo test --lib
```
#### Try the changes
```bash
cd examples
cargo run
```
# License
The entire repository is licensed under the [Apache License](https://github.com/hora-search/hora/blob/main/LICENSE).