Hudi logo

A native Rust library for Apache Hudi, with bindings to Python

hudi-rs ci hudi-rs codecov join hudi slack follow hudi x/twitter follow hudi linkedin

The `hudi-rs` project aims to broaden the use of [Apache Hudi](https://github.com/apache/hudi) for a diverse range of users and projects. | Source | Installation Command | |---------------|----------------------| | **PyPi** | `pip install hudi` | | **Crates.io** | `cargo add hudi` | ## Example usage > [!NOTE] > These examples expect a Hudi table exists at `/tmp/trips_table`, created using > the [quick start guide](https://hudi.apache.org/docs/quick-start-guide). ### Python Read a Hudi table into a PyArrow table. ```python from hudi import HudiTableBuilder import pyarrow as pa hudi_table = ( HudiTableBuilder .from_base_uri("/tmp/trips_table") .with_option("hoodie.read.as.of.timestamp", "20241122010827898") .build() ) records = hudi_table.read_snapshot(filters=[("city", "=", "san_francisco")]) arrow_table = pa.Table.from_batches(records) result = arrow_table.select(["rider", "city", "ts", "fare"]) print(result) ``` ### Rust (DataFusion)
Add crate hudi with datafusion feature to your application to query a Hudi table. ```shell cargo new my_project --bin && cd my_project cargo add tokio@1 datafusion@42 cargo add hudi --features datafusion ``` Update `src/main.rs` with the code snippet below then `cargo run`.
```rust use std::sync::Arc; use datafusion::error::Result; use datafusion::prelude::{DataFrame, SessionContext}; use hudi::HudiDataSource; #[tokio::main] async fn main() -> Result<()> { let ctx = SessionContext::new(); let hudi = HudiDataSource::new_with_options( "/tmp/trips_table", [("hoodie.read.as.of.timestamp", "20241122010827898")]).await?; ctx.register_table("trips_table", Arc::new(hudi))?; let df: DataFrame = ctx.sql("SELECT * from trips_table where city = 'san_francisco'").await?; df.show().await?; Ok(()) } ``` ### Work with cloud storage Ensure cloud storage credentials are set properly as environment variables, e.g., `AWS_*`, `AZURE_*`, or `GOOGLE_*`. Relevant storage environment variables will then be picked up. The target table's base uri with schemes such as `s3://`, `az://`, or `gs://` will be processed accordingly. Alternatively, you can pass the storage configuration as options to the `HudiTableBuilder` or `HudiDataSource`. ### Python ```python from hudi import HudiTableBuilder hudi_table = ( HudiTableBuilder .from_base_uri("s3://bucket/trips_table") .with_option("aws_region", "us-west-2") .build() ) ``` ### Rust (DataFusion) ```rust use hudi::HudiDataSource; async fn main() -> Result<()> { let hudi = HudiDataSource::new_with_options( "s3://bucket/trips_table", [("aws_region", "us-west-2")] ).await?; } ``` ## Contributing Check out the [contributing guide](./CONTRIBUTING.md) for all the details about making contributions to the project.