1 Introduction

This model computes the prices of interest rate derivative securities. The model
is based off risk-neutral interest rates following a Hull-White model which can
fit the initial yield curve exactly. The real-world interest rate dynamics are
assumed to follow a Vasicek (time-homogeneous Hull-White) process for sim-
ulation purposes. This framework is chosen for two reasons: it is efficient in
pricing a wide range of interest rate options and it provides a suitable first ap-
proximation to the risk that may be incurred from movements in interest rates.
Models that provide a better fit to market data (eg, the LIBOR Market Model)
are not as flexible in pricing a variety of options. Models that generalize to
multi-dimensional processes (eg, multi-dimensional Hull-White) are more diffi-
cult to estimate and are often less computationally efficient for pricing.

Inputs to each pricing model include a function representing the initial yield
curve and initial forward rate curve.

2 Assumptions

Like all pricing models, the assumption of NFLVR, (No Free Lunch With Van-
ishing Risk) is used. This assumption allows the leveraging of the First Fun-
damental Theorem of Asset Pricing for pricing purposes (ie, all asset prices are
martingales when denominated by another asset under a suitable measure and
can be written as an expectation). It is assumed that there exists an asset M;
which satisfies dM; = ryMdt (ie, instantaneously riskless). Solving the ODE
gives Mt = Moefot 'rsds.

The variable 7, is assumed to follow a Vasicek (Ornstein Uhlenbeck) process:
dry = a(b — ry)dt + ocdW;

Here dW; is an increment of Brownian Motion, a is the speed of mean rever-
sion, b is the long run expected value of r;, and o is the volatility of the process.
This process is chosen for its simplicity and rough approximation of the actual
interest rate process.

By Girsonav’s theorem, dW; = dW; — Mdt is a Brownian Motion under a
suitable measure. Substituting into the equation for the short rate,

g

dry = a(b—r)dt + o (th + Wdt) = a(0(t) — r)dt + odW,

Since this measure change is applicable for ¢ > 0, the model does not allow
arbitrage and can be used for pricing interest rate securities. In particular, the
time dependent parameter 6 can be calibrated to market data (the yield curve)



and then used to price interest rate securities.

By the Fundamental Theorem of Asset Pricing, the price of a zero coupon
bond with par one is
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The final assumption is that the 7 day LIBOR rate is a reasonable proxy for the
short rate r; and that the LIBOR rates (implied or actual) from 1 month to 30

years are the yields on zero coupon bonds. From here on, My/M7p = e~ [ rads

will be denoted D(t,T).

3 Pricing Modules

The following “generic” functions are available: tree (lattice) methods (3.8.1),
analytic Black Scholes formula (3.2), and Jamshidian’s trick for finding options
on a portfolio (3.7.1). From these generic functions, the fixed income derivatives
can be priced.

3.1 Bond Price

Using the bootstrapped yield curve, any bond can be priced as of the current
date. The cash flows are discounted at the zero coupon rate and summed.
However, this does not facilitate the pricing of bonds at some future date. Hull
and White showed that the price of a zero-coupon bond at a date ¢ > 0 is
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Where A(t,T) = 1—e="""Y and F(t) = —%fo’t» is the instantaneous for-
ward rate. The instantaneous forward rate is trivially computed from the spline.
The time-dependent parameter 6(t) is related to F'(t) as follows:
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3.2 Black Scholes

Given a discount factor P(¢,T') and an underlying asset St which is log-normally
distributed, a vanilla option on S7 with strike k with maturity 7" and cumulative
volatility ov/T is given by the Black Scholes formula. In particular, for a call
option,

C(Sy;k,t,To) = SN (dy) — kP(t, T)N (dy — oV/T)



Where d; = log (%) JoVT + LoV/T.

In a fixed income setting, the underlying asset is a bond denominated by a
bond of same tenor as the option. The discount factor and the asset are hence
both bonds, and the “c” is equal to the square root of the integral of the squared
difference between the volatilities of the bonds; see (3.2.2).

3.2.1 Forward Measure

The forward measure can help facilitate pricing of caplets and options on bonds.
Under this measure, the dynamics of a bond B(T,T + §) are
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Where o(t,T) is the volatility of B(t,T).

3.2.2 Bond volatility

In the Hull-White model, the volatility of the bond price is deterministic:
o(t,T)=2(1—e T-1)

= o(t,T+96)—0o(t,T)= T g=a(T—t) (1—e)
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Hence option pricing on the bond reduces to the Black Scholes formula with
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Note that the volatility depends only on a and ¢ and hence these parameters
can be calibrated to the cap market.

3.3 Caplet and Bond option equivalency

The value of a caplet is

1— B(T,T + ) *
D(t,T + 0) <5B(T7T+5) - k> |]—'t1

oE




) 1 .
=R | D(t, T + 0) (5B(T7T+5) - 5) m]
~ +
o (S 1))

_ oE | D(t,T) ((15 _B(T,T +9) <k:+ §>)+ 7

.
D(t,T) ((%1+1 _B(T,T + 5)) |]-‘t]

w50 ()

Where P(-) is a put on a bond with strike -.
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3.4 Caplet pricing

From above, the price of a caplet is the following:

c(t,T,6;k) = (k6 + 1)E
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Where E is the measure induced by B (t,T). The forward measure can then be
used to price the option.

3.5 FEuro Dollar Futures

The future price satisfies
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In a Hull-White model, the future price is
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3.6 Swap

An interest rate swap is an instrument in which two parties exchange rates:
typically fixed for floating. This exchange is in arrears, that is, after the time
period 4 of the floating rate has passed. Letting B(¢,T") be the price of a zero
coupon bond at time ¢ maturity and time 7', the payoff the receiver of floating
is the following;:
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Where tg = t, t,, =T and T is the maturity. The price of this swap is
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By convention, this price is zero at the time of origination. & is termed the swap
rate, and is solved by setting the equation equal to zero:
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t; is typically chosen as a multiple of §. In this case, the swap rate can be further
simplified:
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3.7 Equivalence of Option on Coupon Bond and European
Swaption

A swaption is the right to enter a swap at a future date at a predetermined
swap rate. This can be written as
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Where ¢; = kd, j <n and ¢, =1+ ké. Hence a swaption is a put on a coupon
bond with coupon rate ké and strike 1.



3.7.1 Jamshidian’s Trick

Jamshidian pointed out that an option with payoff (32 f(r) — k)" is equal to a
portfolio of options > (f(r)— f (7)) where r, is the solution to > f(r)—f(r.) =
0 and f is a monotonic function. Hence an option on a coupon bond can be
written as a series of options on zero coupon bonds. Solving for r, involves
Newton’s method for finding the zero’s of a function. Valuing an option on a
coupon bond or, equivalently, a European swaption can thus be computed using
Jamshidian’s trick and multiple calls to the pricing function of an option on a
zero coupon bond.

3.8 American Swaption

Note that in the Hull-White model that the short rate can be decomposed as
ry = ¢(t) + x¢ where 6(t) = @ + ¢(t) and dry = —axzdt + odWy. As there
is no analytic formula for American options, the tree method is used to step
backwards in time. The tree is solved in = and then ¢(¢) is added to the result
for pricing and discounting.

3.8.1 Tree Methods

Consider the SDE dX = «(X,t)dt + o(X,t)dW;. Now consider f(y) such that
f'(y) = 535- Then
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This dynamic can lead to a recombining tree. Letting y = f(x) then w; =
Yo + (m — i)V At and d; = yo — (m — i)V At. The actual value at each node is
given by f~!(u;). The probability of the move is solved by p*u + (1 —p)*d =
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4 Appendix

4.1 Calibration

This library assumes that there exists a yield curve and forward yield curve.
This section gives some methods for calculating such a curve from yield curve
data. Since LIBOR rates extend from 7 days to 1 year, the rates from 1 to 30
years must be extrapolated from LIBOR Swap rates.

4.1.1 Yield Curve calibration

Let S(to,T,d) = k. Assume this rate exists for every T € t,,,+0¢ where i € 0,...N
where N = (30 — ¢,,)/0 and t,, is the last maturity of the LIBOR curve (one
year out). Note that this assumption is not restrictive as it is possible to create
a spline for the missing dates. From the definition of &,

1 ( 1 — B(to,tm +9) )
6 \ X1y Blto, t; +6)

Note that we have all the values in this expression except for B(tg,tm + 0).
Solving for this value,
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We can use this iterative equation to create the entire LIBOR curve from seven

days to thirty years. A cubic spline (which features continuous derivatives across
the spline while matching the observed data) is fit to the bootstrapped curve.
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