// Copyright © SixtyFPS GmbH // SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-Royalty-free-2.0 OR LicenseRef-Slint-Software-3.0 /*! Property binding engine. The current implementation uses lots of heap allocation but that can be optimized later using thin dst container, and intrusive linked list */ // cSpell: ignore rustflags #![allow(unsafe_code)] #![warn(missing_docs)] /// A singled linked list whose nodes are pinned mod single_linked_list_pin { #![allow(unsafe_code)] #[cfg(not(feature = "std"))] use alloc::boxed::Box; use core::pin::Pin; type NodePtr = Option>>>; struct SingleLinkedListPinNode { next: NodePtr, value: T, } pub struct SingleLinkedListPinHead(NodePtr); impl Default for SingleLinkedListPinHead { fn default() -> Self { Self(None) } } impl Drop for SingleLinkedListPinHead { fn drop(&mut self) { // Use a loop instead of relying on the Drop of NodePtr to avoid recursion while let Some(mut x) = core::mem::take(&mut self.0) { // Safety: we don't touch the `x.value` which is the one protected by the Pin self.0 = core::mem::take(unsafe { &mut Pin::get_unchecked_mut(x.as_mut()).next }); } } } impl SingleLinkedListPinHead { pub fn push_front(&mut self, value: T) -> Pin<&T> { self.0 = Some(Box::pin(SingleLinkedListPinNode { next: self.0.take(), value })); // Safety: we can project from SingleLinkedListPinNode unsafe { Pin::new_unchecked(&self.0.as_ref().unwrap().value) } } #[allow(unused)] pub fn iter(&self) -> impl Iterator> { struct I<'a, T>(&'a NodePtr); impl<'a, T> Iterator for I<'a, T> { type Item = Pin<&'a T>; fn next(&mut self) -> Option { if let Some(x) = &self.0 { let r = unsafe { Pin::new_unchecked(&x.value) }; self.0 = &x.next; Some(r) } else { None } } } I(&self.0) } } #[test] fn test_list() { let mut head = SingleLinkedListPinHead::default(); head.push_front(1); head.push_front(2); head.push_front(3); assert_eq!( head.iter().map(|x: Pin<&i32>| *x.get_ref()).collect::>(), vec![3, 2, 1] ); } #[test] fn big_list() { // should not stack overflow let mut head = SingleLinkedListPinHead::default(); for x in 0..100000 { head.push_front(x); } } } pub(crate) mod dependency_tracker { //! This module contains an implementation of a double linked list that can be used //! to track dependency, such that when a node is dropped, the nodes are automatically //! removed from the list. //! This is unsafe to use for various reason, so it is kept internal. use core::cell::Cell; use core::pin::Pin; #[repr(transparent)] pub struct DependencyListHead(Cell<*const DependencyNode>); impl Default for DependencyListHead { fn default() -> Self { Self(Cell::new(core::ptr::null())) } } impl Drop for DependencyListHead { fn drop(&mut self) { unsafe { DependencyListHead::drop(self as *mut Self) }; } } impl DependencyListHead { pub unsafe fn mem_move(from: *mut Self, to: *mut Self) { (*to).0.set((*from).0.get()); if let Some(next) = (*from).0.get().as_ref() { debug_assert_eq!(from as *const _, next.prev.get() as *const _); next.debug_assert_valid(); next.prev.set(to as *const _); next.debug_assert_valid(); } } /// Swap two list head pub fn swap(from: Pin<&Self>, to: Pin<&Self>) { Cell::swap(&from.0, &to.0); unsafe { if let Some(n) = from.0.get().as_ref() { debug_assert_eq!(n.prev.get() as *const _, &to.0 as *const _); n.prev.set(&from.0 as *const _); n.debug_assert_valid(); } if let Some(n) = to.0.get().as_ref() { debug_assert_eq!(n.prev.get() as *const _, &from.0 as *const _); n.prev.set(&to.0 as *const _); n.debug_assert_valid(); } } } /// Return true is the list is empty pub fn is_empty(&self) -> bool { self.0.get().is_null() } /// Remove all the nodes from the list; pub fn clear(self: Pin<&Self>) { unsafe { if let Some(n) = self.0.get().as_ref() { n.debug_assert_valid(); n.prev.set(core::ptr::null()); } } self.0.set(core::ptr::null()); } pub unsafe fn drop(_self: *mut Self) { if let Some(next) = (*_self).0.get().as_ref() { debug_assert_eq!(_self as *const _, next.prev.get() as *const _); next.debug_assert_valid(); next.prev.set(core::ptr::null()); next.debug_assert_valid(); } } pub fn append(&self, node: Pin<&DependencyNode>) { unsafe { node.remove(); node.debug_assert_valid(); let old = self.0.get(); if let Some(x) = old.as_ref() { x.debug_assert_valid(); } self.0.set(node.get_ref() as *const DependencyNode<_>); node.next.set(old); node.prev.set(&self.0 as *const _); if let Some(old) = old.as_ref() { old.prev.set((&node.next) as *const _); old.debug_assert_valid(); } node.debug_assert_valid(); } } pub fn for_each(&self, mut f: impl FnMut(&T)) { unsafe { let mut next = self.0.get(); while let Some(node) = next.as_ref() { node.debug_assert_valid(); next = node.next.get(); f(&node.binding); } } } } /// The node is owned by the binding; so the binding is always valid /// The next and pref pub struct DependencyNode { next: Cell<*const DependencyNode>, /// This is either null, or a pointer to a pointer to ourself prev: Cell<*const Cell<*const DependencyNode>>, binding: T, } impl DependencyNode { pub fn new(binding: T) -> Self { Self { next: Cell::new(core::ptr::null()), prev: Cell::new(core::ptr::null()), binding } } /// Assert that the invariant of `next` and `prev` are met. pub fn debug_assert_valid(&self) { unsafe { debug_assert!( self.prev.get().is_null() || (*self.prev.get()).get() == self as *const DependencyNode ); debug_assert!( self.next.get().is_null() || (*self.next.get()).prev.get() == (&self.next) as *const Cell<*const DependencyNode> ); // infinite loop? debug_assert_ne!(self.next.get(), self as *const DependencyNode); debug_assert_ne!( self.prev.get(), (&self.next) as *const Cell<*const DependencyNode> ); } } pub fn remove(&self) { self.debug_assert_valid(); unsafe { if let Some(prev) = self.prev.get().as_ref() { prev.set(self.next.get()); } if let Some(next) = self.next.get().as_ref() { next.debug_assert_valid(); next.prev.set(self.prev.get()); next.debug_assert_valid(); } } self.prev.set(core::ptr::null()); self.next.set(core::ptr::null()); } } impl Drop for DependencyNode { fn drop(&mut self) { self.remove(); } } } type DependencyListHead = dependency_tracker::DependencyListHead<*const BindingHolder>; type DependencyNode = dependency_tracker::DependencyNode<*const BindingHolder>; #[cfg(not(feature = "std"))] use alloc::boxed::Box; use alloc::rc::Rc; use core::cell::{Cell, RefCell, UnsafeCell}; use core::marker::PhantomPinned; use core::pin::Pin; /// if a DependencyListHead points to that value, it is because the property is actually /// constant and cannot have dependencies static CONSTANT_PROPERTY_SENTINEL: u32 = 0; /// The return value of a binding #[derive(Copy, Clone, Debug, Eq, PartialEq)] enum BindingResult { /// The binding is a normal binding, and we keep it to re-evaluate it once it is dirty KeepBinding, /// The value of the property is now constant after the binding was evaluated, so /// the binding can be removed. RemoveBinding, } struct BindingVTable { drop: unsafe fn(_self: *mut BindingHolder), evaluate: unsafe fn(_self: *mut BindingHolder, value: *mut ()) -> BindingResult, mark_dirty: unsafe fn(_self: *const BindingHolder, was_dirty: bool), intercept_set: unsafe fn(_self: *const BindingHolder, value: *const ()) -> bool, intercept_set_binding: unsafe fn(_self: *const BindingHolder, new_binding: *mut BindingHolder) -> bool, } /// A binding trait object can be used to dynamically produces values for a property. /// /// # Safety /// /// IS_TWO_WAY_BINDING cannot be true if Self is not a TwoWayBinding unsafe trait BindingCallable { /// This function is called by the property to evaluate the binding and produce a new value. The /// previous property value is provided in the value parameter. unsafe fn evaluate(self: Pin<&Self>, value: *mut ()) -> BindingResult; /// This function is used to notify the binding that one of the dependencies was changed /// and therefore this binding may evaluate to a different value, too. fn mark_dirty(self: Pin<&Self>) {} /// Allow the binding to intercept what happens when the value is set. /// The default implementation returns false, meaning the binding will simply be removed and /// the property will get the new value. /// When returning true, the call was intercepted and the binding will not be removed, /// but the property will still have that value unsafe fn intercept_set(self: Pin<&Self>, _value: *const ()) -> bool { false } /// Allow the binding to intercept what happens when the value is set. /// The default implementation returns false, meaning the binding will simply be removed. /// When returning true, the call was intercepted and the binding will not be removed. unsafe fn intercept_set_binding(self: Pin<&Self>, _new_binding: *mut BindingHolder) -> bool { false } /// Set to true if and only if Self is a TwoWayBinding const IS_TWO_WAY_BINDING: bool = false; } unsafe impl BindingResult> BindingCallable for F { unsafe fn evaluate(self: Pin<&Self>, value: *mut ()) -> BindingResult { self(value) } } #[cfg(feature = "std")] scoped_tls_hkt::scoped_thread_local!(static CURRENT_BINDING : for<'a> Option>); #[cfg(all(not(feature = "std"), feature = "unsafe-single-threaded"))] mod unsafe_single_threaded { use super::BindingHolder; use core::cell::Cell; use core::pin::Pin; use core::ptr::null; pub(super) struct FakeThreadStorage(Cell<*const BindingHolder>); impl FakeThreadStorage { pub const fn new() -> Self { Self(Cell::new(null())) } pub fn set(&self, value: Option>, f: impl FnOnce() -> T) -> T { let old = self.0.replace(value.map_or(null(), |v| v.get_ref() as *const BindingHolder)); let res = f(); let new = self.0.replace(old); assert_eq!(new, value.map_or(null(), |v| v.get_ref() as *const BindingHolder)); res } pub fn is_set(&self) -> bool { !self.0.get().is_null() } pub fn with(&self, f: impl FnOnce(Option>) -> T) -> T { let local = unsafe { self.0.get().as_ref().map(|x| Pin::new_unchecked(x)) }; let res = f(local); assert_eq!(self.0.get(), local.map_or(null(), |v| v.get_ref() as *const BindingHolder)); res } } // Safety: the unsafe_single_threaded feature means we will only be called from a single thread unsafe impl Send for FakeThreadStorage {} unsafe impl Sync for FakeThreadStorage {} } #[cfg(all(not(feature = "std"), feature = "unsafe-single-threaded"))] static CURRENT_BINDING: unsafe_single_threaded::FakeThreadStorage = unsafe_single_threaded::FakeThreadStorage::new(); /// Evaluate a function, but do not register any property dependencies if that function /// get the value of properties pub fn evaluate_no_tracking(f: impl FnOnce() -> T) -> T { CURRENT_BINDING.set(None, f) } /// Return true if there is currently a binding being evaluated so that access to /// properties register dependencies to that binding. pub fn is_currently_tracking() -> bool { CURRENT_BINDING.is_set() && CURRENT_BINDING.with(|x| x.is_some()) } /// This structure erase the `B` type with a vtable. #[repr(C)] struct BindingHolder { /// Access to the list of binding which depends on this binding dependencies: Cell, /// The binding own the nodes used in the dependencies lists of the properties /// From which we depend. dep_nodes: Cell>, vtable: &'static BindingVTable, /// The binding is dirty and need to be re_evaluated dirty: Cell, /// Specify that B is a `TwoWayBinding` is_two_way_binding: bool, pinned: PhantomPinned, #[cfg(slint_debug_property)] pub debug_name: String, binding: B, } impl BindingHolder { fn register_self_as_dependency( self: Pin<&Self>, property_that_will_notify: *mut DependencyListHead, #[cfg(slint_debug_property)] other_debug_name: &str, ) { let node = DependencyNode::new(self.get_ref() as *const _); let mut dep_nodes = self.dep_nodes.take(); let node = dep_nodes.push_front(node); unsafe { DependencyListHead::append(&*property_that_will_notify, node) } self.dep_nodes.set(dep_nodes); } } fn alloc_binding_holder(binding: B) -> *mut BindingHolder { /// Safety: _self must be a pointer that comes from a `Box>::into_raw()` unsafe fn binding_drop(_self: *mut BindingHolder) { drop(Box::from_raw(_self as *mut BindingHolder)); } /// Safety: _self must be a pointer to a `BindingHolder` /// and value must be a pointer to T unsafe fn evaluate( _self: *mut BindingHolder, value: *mut (), ) -> BindingResult { let pinned_holder = Pin::new_unchecked(&*_self); CURRENT_BINDING.set(Some(pinned_holder), || { Pin::new_unchecked(&((*(_self as *mut BindingHolder)).binding)).evaluate(value) }) } /// Safety: _self must be a pointer to a `BindingHolder` unsafe fn mark_dirty(_self: *const BindingHolder, _: bool) { Pin::new_unchecked(&((*(_self as *const BindingHolder)).binding)).mark_dirty() } /// Safety: _self must be a pointer to a `BindingHolder` unsafe fn intercept_set( _self: *const BindingHolder, value: *const (), ) -> bool { Pin::new_unchecked(&((*(_self as *const BindingHolder)).binding)).intercept_set(value) } unsafe fn intercept_set_binding( _self: *const BindingHolder, new_binding: *mut BindingHolder, ) -> bool { Pin::new_unchecked(&((*(_self as *const BindingHolder)).binding)) .intercept_set_binding(new_binding) } trait HasBindingVTable { const VT: &'static BindingVTable; } impl HasBindingVTable for B { const VT: &'static BindingVTable = &BindingVTable { drop: binding_drop::, evaluate: evaluate::, mark_dirty: mark_dirty::, intercept_set: intercept_set::, intercept_set_binding: intercept_set_binding::, }; } let holder: BindingHolder = BindingHolder { dependencies: Cell::new(0), dep_nodes: Default::default(), vtable: ::VT, dirty: Cell::new(true), // starts dirty so it evaluates the property when used is_two_way_binding: B::IS_TWO_WAY_BINDING, pinned: PhantomPinned, #[cfg(slint_debug_property)] debug_name: Default::default(), binding, }; Box::into_raw(Box::new(holder)) as *mut BindingHolder } #[repr(transparent)] #[derive(Default)] struct PropertyHandle { /// The handle can either be a pointer to a binding, or a pointer to the list of dependent properties. /// The two least significant bit of the pointer are flags, as the pointer will be aligned. /// The least significant bit (`0b01`) tells that the binding is borrowed. So no two reference to the /// binding exist at the same time. /// The second to last bit (`0b10`) tells that the pointer points to a binding. Otherwise, it is the head /// node of the linked list of dependent binding handle: Cell, } impl core::fmt::Debug for PropertyHandle { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { let handle = self.handle.get(); write!( f, "PropertyHandle {{ handle: 0x{:x}, locked: {}, binding: {} }}", handle & !0b11, (handle & 0b01) == 0b01, (handle & 0b10) == 0b10 ) } } impl PropertyHandle { /// The lock flag specify that we can get reference to the Cell or unsafe cell fn lock_flag(&self) -> bool { self.handle.get() & 0b1 == 1 } /// Sets the lock_flag. /// Safety: the lock flag must not be unset if there exist reference to what's inside the cell unsafe fn set_lock_flag(&self, set: bool) { self.handle.set(if set { self.handle.get() | 0b1 } else { self.handle.get() & !0b1 }) } /// Access the value. /// Panics if the function try to recursively access the value fn access(&self, f: impl FnOnce(Option>) -> R) -> R { assert!(!self.lock_flag(), "Recursion detected"); unsafe { self.set_lock_flag(true); scopeguard::defer! { self.set_lock_flag(false); } let handle = self.handle.get(); let binding = if handle & 0b10 == 0b10 { Some(Pin::new_unchecked(&mut *((handle & !0b11) as *mut BindingHolder))) } else { None }; f(binding) } } fn remove_binding(&self) { assert!(!self.lock_flag(), "Recursion detected"); let val = self.handle.get(); if val & 0b10 == 0b10 { unsafe { self.set_lock_flag(true); let binding = (val & !0b11) as *mut BindingHolder; let const_sentinel = (&CONSTANT_PROPERTY_SENTINEL) as *const u32 as usize; if (*binding).dependencies.get() == const_sentinel { self.handle.set(const_sentinel); (*binding).dependencies.set(0); } else { DependencyListHead::mem_move( (*binding).dependencies.as_ptr() as *mut DependencyListHead, self.handle.as_ptr() as *mut DependencyListHead, ); } ((*binding).vtable.drop)(binding); } debug_assert!(self.handle.get() & 0b11 == 0); } } /// Safety: the BindingCallable must be valid for the type of this property unsafe fn set_binding( &self, binding: B, #[cfg(slint_debug_property)] debug_name: &str, ) { let binding = alloc_binding_holder::(binding); #[cfg(slint_debug_property)] { (*binding).debug_name = debug_name.into(); } self.set_binding_impl(binding); } /// Implementation of Self::set_binding. fn set_binding_impl(&self, binding: *mut BindingHolder) { let previous_binding_intercepted = self.access(|b| { b.map_or(false, |b| unsafe { // Safety: b is a BindingHolder (b.vtable.intercept_set_binding)(&*b as *const BindingHolder, binding) }) }); if previous_binding_intercepted { return; } self.remove_binding(); debug_assert!((binding as usize) & 0b11 == 0); debug_assert!(self.handle.get() & 0b11 == 0); let const_sentinel = (&CONSTANT_PROPERTY_SENTINEL) as *const u32 as usize; let is_constant = self.handle.get() == const_sentinel; unsafe { if is_constant { (*binding).dependencies.set(const_sentinel); } else { DependencyListHead::mem_move( self.handle.as_ptr() as *mut DependencyListHead, (*binding).dependencies.as_ptr() as *mut DependencyListHead, ); } } self.handle.set((binding as usize) | 0b10); if !is_constant { self.mark_dirty( #[cfg(slint_debug_property)] "", ); } } fn dependencies(&self) -> *mut DependencyListHead { assert!(!self.lock_flag(), "Recursion detected"); if (self.handle.get() & 0b10) != 0 { self.access(|binding| binding.unwrap().dependencies.as_ptr() as *mut DependencyListHead) } else { self.handle.as_ptr() as *mut DependencyListHead } } // `value` is the content of the unsafe cell and will be only dereferenced if the // handle is not locked. (Upholding the requirements of UnsafeCell) unsafe fn update(&self, value: *mut T) { let remove = self.access(|binding| { if let Some(mut binding) = binding { if binding.dirty.get() { // clear all the nodes so that we can start from scratch binding.dep_nodes.set(Default::default()); let r = (binding.vtable.evaluate)( binding.as_mut().get_unchecked_mut() as *mut BindingHolder, value as *mut (), ); binding.dirty.set(false); if r == BindingResult::RemoveBinding { return true; } } } false }); if remove { self.remove_binding() } } /// Register this property as a dependency to the current binding being evaluated fn register_as_dependency_to_current_binding( self: Pin<&Self>, #[cfg(slint_debug_property)] debug_name: &str, ) { if CURRENT_BINDING.is_set() { CURRENT_BINDING.with(|cur_binding| { if let Some(cur_binding) = cur_binding { let dependencies = self.dependencies(); if !core::ptr::eq( unsafe { *(dependencies as *mut *const u32) }, (&CONSTANT_PROPERTY_SENTINEL) as *const u32, ) { cur_binding.register_self_as_dependency( dependencies, #[cfg(slint_debug_property)] debug_name, ); } } }); } } fn mark_dirty(&self, #[cfg(slint_debug_property)] debug_name: &str) { #[cfg(not(slint_debug_property))] let debug_name = ""; unsafe { let dependencies = self.dependencies(); assert!( !core::ptr::eq( *(dependencies as *mut *const u32), (&CONSTANT_PROPERTY_SENTINEL) as *const u32, ), "Constant property being changed {}", debug_name ); mark_dependencies_dirty(dependencies) }; } fn set_constant(&self) { unsafe { let dependencies = self.dependencies(); if !core::ptr::eq( *(dependencies as *mut *const u32), (&CONSTANT_PROPERTY_SENTINEL) as *const u32, ) { DependencyListHead::drop(dependencies); *(dependencies as *mut *const u32) = (&CONSTANT_PROPERTY_SENTINEL) as *const u32 } } } } impl Drop for PropertyHandle { fn drop(&mut self) { self.remove_binding(); debug_assert!(self.handle.get() & 0b11 == 0); if self.handle.get() as *const u32 != (&CONSTANT_PROPERTY_SENTINEL) as *const u32 { unsafe { DependencyListHead::drop(self.handle.as_ptr() as *mut _); } } } } /// Safety: the dependency list must be valid and consistent unsafe fn mark_dependencies_dirty(dependencies: *mut DependencyListHead) { debug_assert!(!core::ptr::eq( *(dependencies as *mut *const u32), (&CONSTANT_PROPERTY_SENTINEL) as *const u32, )); DependencyListHead::for_each(&*dependencies, |binding| { let binding: &BindingHolder = &**binding; let was_dirty = binding.dirty.replace(true); (binding.vtable.mark_dirty)(binding as *const BindingHolder, was_dirty); assert!( !core::ptr::eq( *(binding.dependencies.as_ptr() as *mut *const u32), (&CONSTANT_PROPERTY_SENTINEL) as *const u32, ), "Const property marked as dirty" ); if !was_dirty { mark_dependencies_dirty(binding.dependencies.as_ptr() as *mut DependencyListHead) } }); } /// Types that can be set as bindings for a `Property` pub trait Binding { /// Evaluate the binding and return the new value fn evaluate(&self, old_value: &T) -> T; } impl T> Binding for F { fn evaluate(&self, _value: &T) -> T { self() } } /// A Property that allow binding that track changes /// /// Property van have be assigned value, or bindings. /// When a binding is assigned, it is lazily evaluated on demand /// when calling `get()`. /// When accessing another property from a binding evaluation, /// a dependency will be registered, such that when the property /// change, the binding will automatically be updated #[repr(C)] pub struct Property { /// This is usually a pointer, but the least significant bit tells what it is handle: PropertyHandle, /// This is only safe to access when the lock flag is not set on the handle. value: UnsafeCell, pinned: PhantomPinned, /// Enabled only if compiled with `RUSTFLAGS='--cfg slint_debug_property'` /// Note that adding this flag will also tell the rust compiler to set this /// and that this will not work with C++ because of binary incompatibility #[cfg(slint_debug_property)] pub debug_name: RefCell, } impl core::fmt::Debug for Property { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { #[cfg(slint_debug_property)] write!(f, "[{}]=", self.debug_name.borrow())?; write!( f, "Property({:?}{})", self.get_internal(), if self.is_dirty() { " (dirty)" } else { "" } ) } } impl Default for Property { fn default() -> Self { Self { handle: Default::default(), value: Default::default(), pinned: PhantomPinned, #[cfg(slint_debug_property)] debug_name: Default::default(), } } } impl Property { /// Create a new property with this value pub fn new(value: T) -> Self { Self { handle: Default::default(), value: UnsafeCell::new(value), pinned: PhantomPinned, #[cfg(slint_debug_property)] debug_name: Default::default(), } } /// Same as [`Self::new`] but with a 'static string use for debugging only pub fn new_named(value: T, _name: &'static str) -> Self { Self { handle: Default::default(), value: UnsafeCell::new(value), pinned: PhantomPinned, #[cfg(slint_debug_property)] debug_name: _name.to_owned().into(), } } /// Get the value of the property /// /// This may evaluate the binding if there is a binding and it is dirty /// /// If the function is called directly or indirectly from a binding evaluation /// of another Property, a dependency will be registered. /// /// Panics if this property is get while evaluating its own binding or /// cloning the value. pub fn get(self: Pin<&Self>) -> T { unsafe { self.handle.update(self.value.get()) }; let handle = unsafe { Pin::new_unchecked(&self.handle) }; handle.register_as_dependency_to_current_binding( #[cfg(slint_debug_property)] self.debug_name.borrow().as_str(), ); self.get_internal() } /// Same as get() but without registering a dependency /// /// This allow to optimize bindings that know that they might not need to /// re_evaluate themselves when the property change or that have registered /// the dependency in another way. /// /// ## Example /// ``` /// use std::rc::Rc; /// use i_slint_core::Property; /// let prop1 = Rc::pin(Property::new(100)); /// let prop2 = Rc::pin(Property::::default()); /// prop2.as_ref().set_binding({ /// let prop1 = prop1.clone(); // in order to move it into the closure. /// move || { prop1.as_ref().get_untracked() + 30 } /// }); /// assert_eq!(prop2.as_ref().get(), 130); /// prop1.set(200); /// // changing prop1 do not affect the prop2 binding because no dependency was registered /// assert_eq!(prop2.as_ref().get(), 130); /// ``` pub fn get_untracked(self: Pin<&Self>) -> T { unsafe { self.handle.update(self.value.get()) }; self.get_internal() } /// Get the value without registering any dependencies or executing any binding fn get_internal(&self) -> T { self.handle.access(|_| { // Safety: PropertyHandle::access ensure that the value is locked unsafe { (*self.value.get()).clone() } }) } /// Change the value of this property /// /// If other properties have binding depending of this property, these properties will /// be marked as dirty. // FIXME pub fn set(self: Pin<&Self>, t: T) { pub fn set(&self, t: T) where T: PartialEq, { let previous_binding_intercepted = self.handle.access(|b| { b.map_or(false, |b| unsafe { // Safety: b is a BindingHolder (b.vtable.intercept_set)(&*b as *const BindingHolder, &t as *const T as *const ()) }) }); if !previous_binding_intercepted { self.handle.remove_binding(); } // Safety: PropertyHandle::access ensure that the value is locked let has_value_changed = self.handle.access(|_| unsafe { *self.value.get() != t && { *self.value.get() = t; true } }); if has_value_changed { self.handle.mark_dirty( #[cfg(slint_debug_property)] self.debug_name.borrow().as_str(), ); } } /// Set a binding to this property. /// /// Bindings are evaluated lazily from calling get, and the return value of the binding /// is the new value. /// /// If other properties have bindings depending of this property, these properties will /// be marked as dirty. /// /// Closures of type `Fn()->T` implements `Binding` and can be used as a binding /// /// ## Example /// ``` /// use std::rc::Rc; /// use i_slint_core::Property; /// let prop1 = Rc::pin(Property::new(100)); /// let prop2 = Rc::pin(Property::::default()); /// prop2.as_ref().set_binding({ /// let prop1 = prop1.clone(); // in order to move it into the closure. /// move || { prop1.as_ref().get() + 30 } /// }); /// assert_eq!(prop2.as_ref().get(), 130); /// prop1.set(200); /// // A change in prop1 forced the binding on prop2 to re_evaluate /// assert_eq!(prop2.as_ref().get(), 230); /// ``` //FIXME pub fn set_binding(self: Pin<&Self>, f: impl Binding + 'static) { pub fn set_binding(&self, binding: impl Binding + 'static) { // Safety: This will make a binding callable for the type T unsafe { self.handle.set_binding( move |val: *mut ()| { let val = &mut *(val as *mut T); *val = binding.evaluate(val); BindingResult::KeepBinding }, #[cfg(slint_debug_property)] self.debug_name.borrow().as_str(), ) } self.handle.mark_dirty( #[cfg(slint_debug_property)] self.debug_name.borrow().as_str(), ); } /// Any of the properties accessed during the last evaluation of the closure called /// from the last call to evaluate is potentially dirty. pub fn is_dirty(&self) -> bool { self.handle.access(|binding| binding.map_or(false, |b| b.dirty.get())) } /// Internal function to mark the property as dirty and notify dependencies, regardless of /// whether the property value has actually changed or not. pub fn mark_dirty(&self) { self.handle.mark_dirty( #[cfg(slint_debug_property)] self.debug_name.borrow().as_str(), ) } /// Mark that this property will never be modified again and that no tracking should be done pub fn set_constant(&self) { self.handle.set_constant(); } } #[test] fn properties_simple_test() { use pin_weak::rc::PinWeak; use std::rc::Rc; fn g(prop: &Property) -> i32 { unsafe { Pin::new_unchecked(prop).get() } } #[derive(Default)] struct Component { width: Property, height: Property, area: Property, } let compo = Rc::pin(Component::default()); let w = PinWeak::downgrade(compo.clone()); compo.area.set_binding(move || { let compo = w.upgrade().unwrap(); g(&compo.width) * g(&compo.height) }); compo.width.set(4); compo.height.set(8); assert_eq!(g(&compo.width), 4); assert_eq!(g(&compo.height), 8); assert_eq!(g(&compo.area), 4 * 8); let w = PinWeak::downgrade(compo.clone()); compo.width.set_binding(move || { let compo = w.upgrade().unwrap(); g(&compo.height) * 2 }); assert_eq!(g(&compo.width), 8 * 2); assert_eq!(g(&compo.height), 8); assert_eq!(g(&compo.area), 8 * 8 * 2); } impl Property { /// Link two property such that any change to one property is affecting the other property as if they /// where, in fact, a single property. /// The value or binding of prop2 is kept. pub fn link_two_way(prop1: Pin<&Self>, prop2: Pin<&Self>) { struct TwoWayBinding { common_property: Pin>>, } unsafe impl BindingCallable for TwoWayBinding { unsafe fn evaluate(self: Pin<&Self>, value: *mut ()) -> BindingResult { *(value as *mut T) = self.common_property.as_ref().get(); BindingResult::KeepBinding } unsafe fn intercept_set(self: Pin<&Self>, value: *const ()) -> bool { self.common_property.as_ref().set((*(value as *const T)).clone()); true } unsafe fn intercept_set_binding( self: Pin<&Self>, new_binding: *mut BindingHolder, ) -> bool { self.common_property.handle.set_binding_impl(new_binding); true } const IS_TWO_WAY_BINDING: bool = true; } #[cfg(slint_debug_property)] let debug_name = format!("<{}<=>{}>", prop1.debug_name.borrow(), prop2.debug_name.borrow()); let value = prop2.get_internal(); let prop1_handle_val = prop1.handle.handle.get(); if prop1_handle_val & 0b10 == 0b10 { // Safety: the handle is a pointer to a binding let holder = unsafe { &*((prop1_handle_val & !0b11) as *const BindingHolder) }; if holder.is_two_way_binding { unsafe { // Safety: the handle is a pointer to a binding whose B is a TwoWayBinding let holder = &*((prop1_handle_val & !0b11) as *const BindingHolder>); // Safety: TwoWayBinding's T is the same as the type for both properties prop2.handle.set_binding( TwoWayBinding { common_property: holder.binding.common_property.clone() }, #[cfg(slint_debug_property)] debug_name.as_str(), ); } prop2.set(value); return; } }; let prop2_handle_val = prop2.handle.handle.get(); let handle = if prop2_handle_val & 0b10 == 0b10 { // Safety: the handle is a pointer to a binding let holder = unsafe { &*((prop2_handle_val & !0b11) as *const BindingHolder) }; if holder.is_two_way_binding { unsafe { // Safety: the handle is a pointer to a binding whose B is a TwoWayBinding let holder = &*((prop2_handle_val & !0b11) as *const BindingHolder>); // Safety: TwoWayBinding's T is the same as the type for both properties prop1.handle.set_binding( TwoWayBinding { common_property: holder.binding.common_property.clone() }, #[cfg(slint_debug_property)] debug_name.as_str(), ); } return; } // If prop2 is a binding, just "steal it" prop2.handle.handle.set(0); PropertyHandle { handle: Cell::new(prop2_handle_val) } } else { PropertyHandle::default() }; let common_property = Rc::pin(Property { handle, value: UnsafeCell::new(value), pinned: PhantomPinned, #[cfg(slint_debug_property)] debug_name: debug_name.clone().into(), }); // Safety: TwoWayBinding's T is the same as the type for both properties unsafe { prop1.handle.set_binding( TwoWayBinding { common_property: common_property.clone() }, #[cfg(slint_debug_property)] debug_name.as_str(), ); prop2.handle.set_binding( TwoWayBinding { common_property }, #[cfg(slint_debug_property)] debug_name.as_str(), ); } } } #[test] fn property_two_ways_test() { let p1 = Rc::pin(Property::new(42)); let p2 = Rc::pin(Property::new(88)); let depends = Box::pin(Property::new(0)); depends.as_ref().set_binding({ let p1 = p1.clone(); move || p1.as_ref().get() + 8 }); assert_eq!(depends.as_ref().get(), 42 + 8); Property::link_two_way(p1.as_ref(), p2.as_ref()); assert_eq!(p1.as_ref().get(), 88); assert_eq!(p2.as_ref().get(), 88); assert_eq!(depends.as_ref().get(), 88 + 8); p2.as_ref().set(5); assert_eq!(p1.as_ref().get(), 5); assert_eq!(p2.as_ref().get(), 5); assert_eq!(depends.as_ref().get(), 5 + 8); p1.as_ref().set(22); assert_eq!(p1.as_ref().get(), 22); assert_eq!(p2.as_ref().get(), 22); assert_eq!(depends.as_ref().get(), 22 + 8); } #[test] fn property_two_ways_test_binding() { let p1 = Rc::pin(Property::new(42)); let p2 = Rc::pin(Property::new(88)); let global = Rc::pin(Property::new(23)); p2.as_ref().set_binding({ let global = global.clone(); move || global.as_ref().get() + 9 }); let depends = Box::pin(Property::new(0)); depends.as_ref().set_binding({ let p1 = p1.clone(); move || p1.as_ref().get() + 8 }); Property::link_two_way(p1.as_ref(), p2.as_ref()); assert_eq!(p1.as_ref().get(), 23 + 9); assert_eq!(p2.as_ref().get(), 23 + 9); assert_eq!(depends.as_ref().get(), 23 + 9 + 8); global.as_ref().set(55); assert_eq!(p1.as_ref().get(), 55 + 9); assert_eq!(p2.as_ref().get(), 55 + 9); assert_eq!(depends.as_ref().get(), 55 + 9 + 8); } #[test] fn property_two_ways_recurse_from_binding() { let xx = Rc::pin(Property::new(0)); let p1 = Rc::pin(Property::new(42)); let p2 = Rc::pin(Property::new(88)); let global = Rc::pin(Property::new(23)); let done = Rc::new(Cell::new(false)); xx.set_binding({ let p1 = p1.clone(); let p2 = p2.clone(); let global = global.clone(); let xx_weak = pin_weak::rc::PinWeak::downgrade(xx.clone()); move || { if !done.get() { done.set(true); Property::link_two_way(p1.as_ref(), p2.as_ref()); let xx = xx_weak.upgrade().unwrap(); p1.as_ref().set_binding(move || xx.as_ref().get() + 9); } global.as_ref().get() + 2 } }); assert_eq!(xx.as_ref().get(), 23 + 2); assert_eq!(p1.as_ref().get(), 23 + 2 + 9); assert_eq!(p2.as_ref().get(), 23 + 2 + 9); global.as_ref().set(55); assert_eq!(p1.as_ref().get(), 55 + 2 + 9); assert_eq!(p2.as_ref().get(), 55 + 2 + 9); assert_eq!(xx.as_ref().get(), 55 + 2); } #[test] fn property_two_ways_binding_of_two_way_binding_first() { let p1_1 = Rc::pin(Property::new(2)); let p1_2 = Rc::pin(Property::new(4)); Property::link_two_way(p1_1.as_ref(), p1_2.as_ref()); assert_eq!(p1_1.as_ref().get(), 4); assert_eq!(p1_2.as_ref().get(), 4); let p2 = Rc::pin(Property::new(3)); Property::link_two_way(p1_1.as_ref(), p2.as_ref()); assert_eq!(p1_1.as_ref().get(), 3); assert_eq!(p1_2.as_ref().get(), 3); assert_eq!(p2.as_ref().get(), 3); p1_1.set(6); assert_eq!(p1_1.as_ref().get(), 6); assert_eq!(p1_2.as_ref().get(), 6); assert_eq!(p2.as_ref().get(), 6); p1_2.set(8); assert_eq!(p1_1.as_ref().get(), 8); assert_eq!(p1_2.as_ref().get(), 8); assert_eq!(p2.as_ref().get(), 8); p2.set(7); assert_eq!(p1_1.as_ref().get(), 7); assert_eq!(p1_2.as_ref().get(), 7); assert_eq!(p2.as_ref().get(), 7); } #[test] fn property_two_ways_binding_of_two_way_binding_second() { let p1 = Rc::pin(Property::new(2)); let p2_1 = Rc::pin(Property::new(3)); let p2_2 = Rc::pin(Property::new(5)); Property::link_two_way(p2_1.as_ref(), p2_2.as_ref()); assert_eq!(p2_1.as_ref().get(), 5); assert_eq!(p2_2.as_ref().get(), 5); Property::link_two_way(p1.as_ref(), p2_2.as_ref()); assert_eq!(p1.as_ref().get(), 5); assert_eq!(p2_1.as_ref().get(), 5); assert_eq!(p2_2.as_ref().get(), 5); p1.set(6); assert_eq!(p1.as_ref().get(), 6); assert_eq!(p2_1.as_ref().get(), 6); assert_eq!(p2_2.as_ref().get(), 6); p2_1.set(7); assert_eq!(p1.as_ref().get(), 7); assert_eq!(p2_1.as_ref().get(), 7); assert_eq!(p2_2.as_ref().get(), 7); p2_2.set(9); assert_eq!(p1.as_ref().get(), 9); assert_eq!(p2_1.as_ref().get(), 9); assert_eq!(p2_2.as_ref().get(), 9); } #[test] fn property_two_ways_binding_of_two_two_way_bindings() { let p1_1 = Rc::pin(Property::new(2)); let p1_2 = Rc::pin(Property::new(4)); Property::link_two_way(p1_1.as_ref(), p1_2.as_ref()); assert_eq!(p1_1.as_ref().get(), 4); assert_eq!(p1_2.as_ref().get(), 4); let p2_1 = Rc::pin(Property::new(3)); let p2_2 = Rc::pin(Property::new(5)); Property::link_two_way(p2_1.as_ref(), p2_2.as_ref()); assert_eq!(p2_1.as_ref().get(), 5); assert_eq!(p2_2.as_ref().get(), 5); Property::link_two_way(p1_1.as_ref(), p2_2.as_ref()); assert_eq!(p1_1.as_ref().get(), 5); assert_eq!(p1_2.as_ref().get(), 5); assert_eq!(p2_1.as_ref().get(), 5); assert_eq!(p2_2.as_ref().get(), 5); p1_1.set(6); assert_eq!(p1_1.as_ref().get(), 6); assert_eq!(p1_2.as_ref().get(), 6); assert_eq!(p2_1.as_ref().get(), 6); assert_eq!(p2_2.as_ref().get(), 6); p1_2.set(8); assert_eq!(p1_1.as_ref().get(), 8); assert_eq!(p1_2.as_ref().get(), 8); assert_eq!(p2_1.as_ref().get(), 8); assert_eq!(p2_2.as_ref().get(), 8); p2_1.set(7); assert_eq!(p1_1.as_ref().get(), 7); assert_eq!(p1_2.as_ref().get(), 7); assert_eq!(p2_1.as_ref().get(), 7); assert_eq!(p2_2.as_ref().get(), 7); p2_2.set(9); assert_eq!(p1_1.as_ref().get(), 9); assert_eq!(p1_2.as_ref().get(), 9); assert_eq!(p2_1.as_ref().get(), 9); assert_eq!(p2_2.as_ref().get(), 9); } mod change_tracker; pub use change_tracker::*; mod properties_animations; pub use crate::items::StateInfo; pub use properties_animations::*; struct StateInfoBinding { dirty_time: Cell>, binding: F, } unsafe impl i32> crate::properties::BindingCallable for StateInfoBinding { unsafe fn evaluate(self: Pin<&Self>, value: *mut ()) -> BindingResult { // Safety: We should ony set this binding on a property of type StateInfo let value = &mut *(value as *mut StateInfo); let new_state = (self.binding)(); let timestamp = self.dirty_time.take(); if new_state != value.current_state { value.previous_state = value.current_state; value.change_time = timestamp.unwrap_or_else(crate::animations::current_tick); value.current_state = new_state; } BindingResult::KeepBinding } fn mark_dirty(self: Pin<&Self>) { if self.dirty_time.get().is_none() { self.dirty_time.set(Some(crate::animations::current_tick())) } } } /// Sets a binding that returns a state to a StateInfo property pub fn set_state_binding(property: Pin<&Property>, binding: impl Fn() -> i32 + 'static) { let bind_callable = StateInfoBinding { dirty_time: Cell::new(None), binding }; // Safety: The StateInfoBinding is a BindingCallable for type StateInfo unsafe { property.handle.set_binding( bind_callable, #[cfg(slint_debug_property)] property.debug_name.borrow().as_str(), ) } } #[doc(hidden)] pub trait PropertyDirtyHandler { fn notify(self: Pin<&Self>); } impl PropertyDirtyHandler for () { fn notify(self: Pin<&Self>) {} } impl PropertyDirtyHandler for F { fn notify(self: Pin<&Self>) { (self.get_ref())() } } /// This structure allow to run a closure that queries properties, and can report /// if any property we accessed have become dirty pub struct PropertyTracker { holder: BindingHolder, } impl Default for PropertyTracker<()> { fn default() -> Self { static VT: &BindingVTable = &BindingVTable { drop: |_| (), evaluate: |_, _| BindingResult::KeepBinding, mark_dirty: |_, _| (), intercept_set: |_, _| false, intercept_set_binding: |_, _| false, }; let holder = BindingHolder { dependencies: Cell::new(0), dep_nodes: Default::default(), vtable: VT, dirty: Cell::new(true), // starts dirty so it evaluates the property when used is_two_way_binding: false, pinned: PhantomPinned, binding: (), #[cfg(slint_debug_property)] debug_name: ">".into(), }; Self { holder } } } impl Drop for PropertyTracker { fn drop(&mut self) { unsafe { DependencyListHead::drop(self.holder.dependencies.as_ptr() as *mut DependencyListHead); } } } impl PropertyTracker { #[cfg(slint_debug_property)] /// set the debug name when `cfg(slint_debug_property` pub fn set_debug_name(&mut self, debug_name: String) { self.holder.debug_name = debug_name; } /// Register this property tracker as a dependency to the current binding/property tracker being evaluated pub fn register_as_dependency_to_current_binding(self: Pin<&Self>) { if CURRENT_BINDING.is_set() { CURRENT_BINDING.with(|cur_binding| { if let Some(cur_binding) = cur_binding { debug_assert!(!core::ptr::eq( self.holder.dependencies.get() as *const u32, (&CONSTANT_PROPERTY_SENTINEL) as *const u32, )); cur_binding.register_self_as_dependency( self.holder.dependencies.as_ptr() as *mut DependencyListHead, #[cfg(slint_debug_property)] &self.holder.debug_name, ); } }); } } /// Any of the properties accessed during the last evaluation of the closure called /// from the last call to evaluate is potentially dirty. pub fn is_dirty(&self) -> bool { self.holder.dirty.get() } /// Evaluate the function, and record dependencies of properties accessed within this function. /// If this is called during the evaluation of another property binding or property tracker, then /// any changes to accessed properties will also mark the other binding/tracker dirty. pub fn evaluate(self: Pin<&Self>, f: impl FnOnce() -> R) -> R { self.register_as_dependency_to_current_binding(); self.evaluate_as_dependency_root(f) } /// Evaluate the function, and record dependencies of properties accessed within this function. /// If this is called during the evaluation of another property binding or property tracker, then /// any changes to accessed properties will not propagate to the other tracker. pub fn evaluate_as_dependency_root(self: Pin<&Self>, f: impl FnOnce() -> R) -> R { // clear all the nodes so that we can start from scratch self.holder.dep_nodes.set(Default::default()); // Safety: it is safe to project the holder as we don't implement drop or unpin let pinned_holder = unsafe { self.map_unchecked(|s| { core::mem::transmute::<&BindingHolder, &BindingHolder<()>>(&s.holder) }) }; let r = CURRENT_BINDING.set(Some(pinned_holder), f); self.holder.dirty.set(false); r } /// Call [`Self::evaluate`] if and only if it is dirty. /// But register a dependency in any case. pub fn evaluate_if_dirty(self: Pin<&Self>, f: impl FnOnce() -> R) -> Option { self.register_as_dependency_to_current_binding(); self.is_dirty().then(|| self.evaluate_as_dependency_root(f)) } /// Mark this PropertyTracker as dirty pub fn set_dirty(&self) { self.holder.dirty.set(true); unsafe { mark_dependencies_dirty(self.holder.dependencies.as_ptr() as *mut _) }; } /// Sets the specified callback handler function, which will be called if any /// properties that this tracker depends on becomes dirty. /// /// The `handler` `PropertyDirtyHandler` is a trait which is implemented for /// any `Fn()` closure /// /// Note that the handler will be invoked immediately when a property is modified or /// marked as dirty. In particular, the involved property are still in a locked /// state and should not be accessed while the handler is run. This function can be /// useful to mark some work to be done later. pub fn new_with_dirty_handler(handler: DirtyHandler) -> Self { /// Safety: _self must be a pointer to a `BindingHolder` unsafe fn mark_dirty( _self: *const BindingHolder, was_dirty: bool, ) { if !was_dirty { Pin::new_unchecked(&(*(_self as *const BindingHolder)).binding).notify(); } } trait HasBindingVTable { const VT: &'static BindingVTable; } impl HasBindingVTable for B { const VT: &'static BindingVTable = &BindingVTable { drop: |_| (), evaluate: |_, _| BindingResult::KeepBinding, mark_dirty: mark_dirty::, intercept_set: |_, _| false, intercept_set_binding: |_, _| false, }; } let holder = BindingHolder { dependencies: Cell::new(0), dep_nodes: Default::default(), vtable: ::VT, dirty: Cell::new(true), // starts dirty so it evaluates the property when used is_two_way_binding: false, pinned: PhantomPinned, binding: handler, #[cfg(slint_debug_property)] debug_name: "".into(), }; Self { holder } } } #[test] fn test_property_listener_scope() { let scope = Box::pin(PropertyTracker::default()); let prop1 = Box::pin(Property::new(42)); assert!(scope.is_dirty()); // It is dirty at the beginning let r = scope.as_ref().evaluate(|| prop1.as_ref().get()); assert_eq!(r, 42); assert!(!scope.is_dirty()); // It is no longer dirty prop1.as_ref().set(88); assert!(scope.is_dirty()); // now dirty for prop1 changed. let r = scope.as_ref().evaluate(|| prop1.as_ref().get() + 1); assert_eq!(r, 89); assert!(!scope.is_dirty()); let r = scope.as_ref().evaluate(|| 12); assert_eq!(r, 12); assert!(!scope.is_dirty()); prop1.as_ref().set(1); assert!(!scope.is_dirty()); scope.as_ref().evaluate_if_dirty(|| panic!("should not be dirty")); scope.set_dirty(); let mut ok = false; scope.as_ref().evaluate_if_dirty(|| ok = true); assert!(ok); } #[test] fn test_nested_property_trackers() { let tracker1 = Box::pin(PropertyTracker::default()); let tracker2 = Box::pin(PropertyTracker::default()); let prop = Box::pin(Property::new(42)); let r = tracker1.as_ref().evaluate(|| tracker2.as_ref().evaluate(|| prop.as_ref().get())); assert_eq!(r, 42); prop.as_ref().set(1); assert!(tracker2.as_ref().is_dirty()); assert!(tracker1.as_ref().is_dirty()); let r = tracker1 .as_ref() .evaluate(|| tracker2.as_ref().evaluate_as_dependency_root(|| prop.as_ref().get())); assert_eq!(r, 1); prop.as_ref().set(100); assert!(tracker2.as_ref().is_dirty()); assert!(!tracker1.as_ref().is_dirty()); } #[test] fn test_property_dirty_handler() { let call_flag = Rc::new(Cell::new(false)); let tracker = Box::pin(PropertyTracker::new_with_dirty_handler({ let call_flag = call_flag.clone(); move || { (*call_flag).set(true); } })); let prop = Box::pin(Property::new(42)); let r = tracker.as_ref().evaluate(|| prop.as_ref().get()); assert_eq!(r, 42); assert!(!tracker.as_ref().is_dirty()); assert!(!call_flag.get()); prop.as_ref().set(100); assert!(tracker.as_ref().is_dirty()); assert!(call_flag.get()); // Repeated changes before evaluation should not trigger further // change handler calls, otherwise it would be a notification storm. call_flag.set(false); prop.as_ref().set(101); assert!(tracker.as_ref().is_dirty()); assert!(!call_flag.get()); } #[test] fn test_property_tracker_drop() { let outer_tracker = Box::pin(PropertyTracker::default()); let inner_tracker = Box::pin(PropertyTracker::default()); let prop = Box::pin(Property::new(42)); let r = outer_tracker.as_ref().evaluate(|| inner_tracker.as_ref().evaluate(|| prop.as_ref().get())); assert_eq!(r, 42); drop(inner_tracker); prop.as_ref().set(200); // don't crash } #[test] fn test_nested_property_tracker_dirty() { let outer_tracker = Box::pin(PropertyTracker::default()); let inner_tracker = Box::pin(PropertyTracker::default()); let prop = Box::pin(Property::new(42)); let r = outer_tracker.as_ref().evaluate(|| inner_tracker.as_ref().evaluate(|| prop.as_ref().get())); assert_eq!(r, 42); assert!(!outer_tracker.is_dirty()); assert!(!inner_tracker.is_dirty()); // Let's pretend that there was another dependency unaccounted first, mark the inner tracker as dirty // by hand. inner_tracker.as_ref().set_dirty(); assert!(outer_tracker.is_dirty()); } #[test] #[allow(clippy::redundant_closure)] fn test_nested_property_tracker_evaluate_if_dirty() { let outer_tracker = Box::pin(PropertyTracker::default()); let inner_tracker = Box::pin(PropertyTracker::default()); let prop = Box::pin(Property::new(42)); let mut cache = 0; let mut cache_or_evaluate = || { if let Some(x) = inner_tracker.as_ref().evaluate_if_dirty(|| prop.as_ref().get() + 1) { cache = x; } cache }; let r = outer_tracker.as_ref().evaluate(|| cache_or_evaluate()); assert_eq!(r, 43); assert!(!outer_tracker.is_dirty()); assert!(!inner_tracker.is_dirty()); prop.as_ref().set(11); assert!(outer_tracker.is_dirty()); assert!(inner_tracker.is_dirty()); let r = outer_tracker.as_ref().evaluate(|| cache_or_evaluate()); assert_eq!(r, 12); } #[cfg(feature = "ffi")] pub(crate) mod ffi;