/* Licensed under MIT - see LICENSE.MIT file for details */ #ifndef CCAN_LIST_H #define CCAN_LIST_H //#define CCAN_LIST_DEBUG 1 #include #include #include #include #include /** * struct list_node - an entry in a doubly-linked list * @next: next entry (self if empty) * @prev: previous entry (self if empty) * * This is used as an entry in a linked list. * Example: * struct child { * const char *name; * // Linked list of all us children. * struct list_node list; * }; */ struct list_node { struct list_node *next, *prev; }; /** * struct list_head - the head of a doubly-linked list * @h: the list_head (containing next and prev pointers) * * This is used as the head of a linked list. * Example: * struct parent { * const char *name; * struct list_head children; * unsigned int num_children; * }; */ struct list_head { struct list_node n; }; /** * list_check - check head of a list for consistency * @h: the list_head * @abortstr: the location to print on aborting, or NULL. * * Because list_nodes have redundant information, consistency checking between * the back and forward links can be done. This is useful as a debugging check. * If @abortstr is non-NULL, that will be printed in a diagnostic if the list * is inconsistent, and the function will abort. * * Returns the list head if the list is consistent, NULL if not (it * can never return NULL if @abortstr is set). * * See also: list_check_node() * * Example: * static void dump_parent(struct parent *p) * { * struct child *c; * * printf("%s (%u children):\n", p->name, p->num_children); * list_check(&p->children, "bad child list"); * list_for_each(&p->children, c, list) * printf(" -> %s\n", c->name); * } */ struct list_head *list_check(const struct list_head *h, const char *abortstr); /** * list_check_node - check node of a list for consistency * @n: the list_node * @abortstr: the location to print on aborting, or NULL. * * Check consistency of the list node is in (it must be in one). * * See also: list_check() * * Example: * static void dump_child(const struct child *c) * { * list_check_node(&c->list, "bad child list"); * printf("%s\n", c->name); * } */ struct list_node *list_check_node(const struct list_node *n, const char *abortstr); #define LIST_LOC __FILE__ ":" stringify(__LINE__) #ifdef CCAN_LIST_DEBUG #define list_debug(h, loc) list_check((h), loc) #define list_debug_node(n, loc) list_check_node((n), loc) #else #define list_debug(h, loc) ((void)loc, h) #define list_debug_node(n, loc) ((void)loc, n) #endif /** * LIST_HEAD_INIT - initializer for an empty list_head * @name: the name of the list. * * Explicit initializer for an empty list. * * See also: * LIST_HEAD, list_head_init() * * Example: * static struct list_head my_list = LIST_HEAD_INIT(my_list); */ #define LIST_HEAD_INIT(name) { { &(name).n, &(name).n } } /** * LIST_HEAD - define and initialize an empty list_head * @name: the name of the list. * * The LIST_HEAD macro defines a list_head and initializes it to an empty * list. It can be prepended by "static" to define a static list_head. * * See also: * LIST_HEAD_INIT, list_head_init() * * Example: * static LIST_HEAD(my_global_list); */ #define LIST_HEAD(name) \ struct list_head name = LIST_HEAD_INIT(name) /** * list_head_init - initialize a list_head * @h: the list_head to set to the empty list * * Example: * ... * struct parent *parent = malloc(sizeof(*parent)); * * list_head_init(&parent->children); * parent->num_children = 0; */ static inline void list_head_init(struct list_head *h) { h->n.next = h->n.prev = &h->n; } /** * list_node_init - initialize a list_node * @n: the list_node to link to itself. * * You don't need to use this normally! But it lets you list_del(@n) * safely. */ static inline void list_node_init(struct list_node *n) { n->next = n->prev = n; } /** * list_add_after - add an entry after an existing node in a linked list * @h: the list_head to add the node to (for debugging) * @p: the existing list_node to add the node after * @n: the new list_node to add to the list. * * The existing list_node must already be a member of the list. * The new list_node does not need to be initialized; it will be overwritten. * * Example: * struct child c1, c2, c3; * LIST_HEAD(h); * * list_add_tail(&h, &c1.list); * list_add_tail(&h, &c3.list); * list_add_after(&h, &c1.list, &c2.list); */ #define list_add_after(h, p, n) list_add_after_(h, p, n, LIST_LOC) static inline void list_add_after_(struct list_head *h, struct list_node *p, struct list_node *n, const char *abortstr) { n->next = p->next; n->prev = p; p->next->prev = n; p->next = n; (void)list_debug(h, abortstr); } /** * list_add - add an entry at the start of a linked list. * @h: the list_head to add the node to * @n: the list_node to add to the list. * * The list_node does not need to be initialized; it will be overwritten. * Example: * struct child *child = malloc(sizeof(*child)); * * child->name = "marvin"; * list_add(&parent->children, &child->list); * parent->num_children++; */ #define list_add(h, n) list_add_(h, n, LIST_LOC) static inline void list_add_(struct list_head *h, struct list_node *n, const char *abortstr) { list_add_after_(h, &h->n, n, abortstr); } /** * list_add_before - add an entry before an existing node in a linked list * @h: the list_head to add the node to (for debugging) * @p: the existing list_node to add the node before * @n: the new list_node to add to the list. * * The existing list_node must already be a member of the list. * The new list_node does not need to be initialized; it will be overwritten. * * Example: * list_head_init(&h); * list_add_tail(&h, &c1.list); * list_add_tail(&h, &c3.list); * list_add_before(&h, &c3.list, &c2.list); */ #define list_add_before(h, p, n) list_add_before_(h, p, n, LIST_LOC) static inline void list_add_before_(struct list_head *h, struct list_node *p, struct list_node *n, const char *abortstr) { n->next = p; n->prev = p->prev; p->prev->next = n; p->prev = n; (void)list_debug(h, abortstr); } /** * list_add_tail - add an entry at the end of a linked list. * @h: the list_head to add the node to * @n: the list_node to add to the list. * * The list_node does not need to be initialized; it will be overwritten. * Example: * list_add_tail(&parent->children, &child->list); * parent->num_children++; */ #define list_add_tail(h, n) list_add_tail_(h, n, LIST_LOC) static inline void list_add_tail_(struct list_head *h, struct list_node *n, const char *abortstr) { list_add_before_(h, &h->n, n, abortstr); } /** * list_empty - is a list empty? * @h: the list_head * * If the list is empty, returns true. * * Example: * assert(list_empty(&parent->children) == (parent->num_children == 0)); */ #define list_empty(h) list_empty_(h, LIST_LOC) static inline bool list_empty_(const struct list_head *h, const char* abortstr) { (void)list_debug(h, abortstr); return h->n.next == &h->n; } /** * list_empty_nodebug - is a list empty (and don't perform debug checks)? * @h: the list_head * * If the list is empty, returns true. * This differs from list_empty() in that if CCAN_LIST_DEBUG is set it * will NOT perform debug checks. Only use this function if you REALLY * know what you're doing. * * Example: * assert(list_empty_nodebug(&parent->children) == (parent->num_children == 0)); */ #ifndef CCAN_LIST_DEBUG #define list_empty_nodebug(h) list_empty(h) #else static inline bool list_empty_nodebug(const struct list_head *h) { return h->n.next == &h->n; } #endif /** * list_empty_nocheck - is a list empty? * @h: the list_head * * If the list is empty, returns true. This doesn't perform any * debug check for list consistency, so it can be called without * locks, racing with the list being modified. This is ok for * checks where an incorrect result is not an issue (optimized * bail out path for example). */ static inline bool list_empty_nocheck(const struct list_head *h) { return h->n.next == &h->n; } /** * list_del - delete an entry from an (unknown) linked list. * @n: the list_node to delete from the list. * * Note that this leaves @n in an undefined state; it can be added to * another list, but not deleted again. * * See also: * list_del_from(), list_del_init() * * Example: * list_del(&child->list); * parent->num_children--; */ #define list_del(n) list_del_(n, LIST_LOC) static inline void list_del_(struct list_node *n, const char* abortstr) { (void)list_debug_node(n, abortstr); n->next->prev = n->prev; n->prev->next = n->next; #ifdef CCAN_LIST_DEBUG /* Catch use-after-del. */ n->next = n->prev = NULL; #endif } /** * list_del_init - delete a node, and reset it so it can be deleted again. * @n: the list_node to be deleted. * * list_del(@n) or list_del_init() again after this will be safe, * which can be useful in some cases. * * See also: * list_del_from(), list_del() * * Example: * list_del_init(&child->list); * parent->num_children--; */ #define list_del_init(n) list_del_init_(n, LIST_LOC) static inline void list_del_init_(struct list_node *n, const char *abortstr) { list_del_(n, abortstr); list_node_init(n); } /** * list_del_from - delete an entry from a known linked list. * @h: the list_head the node is in. * @n: the list_node to delete from the list. * * This explicitly indicates which list a node is expected to be in, * which is better documentation and can catch more bugs. * * See also: list_del() * * Example: * list_del_from(&parent->children, &child->list); * parent->num_children--; */ static inline void list_del_from(struct list_head *h, struct list_node *n) { #ifdef CCAN_LIST_DEBUG { /* Thorough check: make sure it was in list! */ struct list_node *i; for (i = h->n.next; i != n; i = i->next) assert(i != &h->n); } #endif /* CCAN_LIST_DEBUG */ /* Quick test that catches a surprising number of bugs. */ assert(!list_empty(h)); list_del(n); } /** * list_swap - swap out an entry from an (unknown) linked list for a new one. * @o: the list_node to replace from the list. * @n: the list_node to insert in place of the old one. * * Note that this leaves @o in an undefined state; it can be added to * another list, but not deleted/swapped again. * * See also: * list_del() * * Example: * struct child x1, x2; * LIST_HEAD(xh); * * list_add(&xh, &x1.list); * list_swap(&x1.list, &x2.list); */ #define list_swap(o, n) list_swap_(o, n, LIST_LOC) static inline void list_swap_(struct list_node *o, struct list_node *n, const char* abortstr) { (void)list_debug_node(o, abortstr); *n = *o; n->next->prev = n; n->prev->next = n; #ifdef CCAN_LIST_DEBUG /* Catch use-after-del. */ o->next = o->prev = NULL; #endif } /** * list_entry - convert a list_node back into the structure containing it. * @n: the list_node * @type: the type of the entry * @member: the list_node member of the type * * Example: * // First list entry is children.next; convert back to child. * child = list_entry(parent->children.n.next, struct child, list); * * See Also: * list_top(), list_for_each() */ #define list_entry(n, type, member) container_of(n, type, member) /** * list_top - get the first entry in a list * @h: the list_head * @type: the type of the entry * @member: the list_node member of the type * * If the list is empty, returns NULL. * * Example: * struct child *first; * first = list_top(&parent->children, struct child, list); * if (!first) * printf("Empty list!\n"); */ #define list_top(h, type, member) \ ((type *)list_top_((h), list_off_(type, member))) static inline const void *list_top_(const struct list_head *h, size_t off) { if (list_empty(h)) return NULL; return (const char *)h->n.next - off; } /** * list_pop - remove the first entry in a list * @h: the list_head * @type: the type of the entry * @member: the list_node member of the type * * If the list is empty, returns NULL. * * Example: * struct child *one; * one = list_pop(&parent->children, struct child, list); * if (!one) * printf("Empty list!\n"); */ #define list_pop(h, type, member) \ ((type *)list_pop_((h), list_off_(type, member))) static inline const void *list_pop_(const struct list_head *h, size_t off) { struct list_node *n; if (list_empty(h)) return NULL; n = h->n.next; list_del(n); return (const char *)n - off; } /** * list_tail - get the last entry in a list * @h: the list_head * @type: the type of the entry * @member: the list_node member of the type * * If the list is empty, returns NULL. * * Example: * struct child *last; * last = list_tail(&parent->children, struct child, list); * if (!last) * printf("Empty list!\n"); */ #define list_tail(h, type, member) \ ((type *)list_tail_((h), list_off_(type, member))) static inline const void *list_tail_(const struct list_head *h, size_t off) { if (list_empty(h)) return NULL; return (const char *)h->n.prev - off; } /** * list_for_each - iterate through a list. * @h: the list_head (warning: evaluated multiple times!) * @i: the structure containing the list_node * @member: the list_node member of the structure * * This is a convenient wrapper to iterate @i over the entire list. It's * a for loop, so you can break and continue as normal. * * Example: * list_for_each(&parent->children, child, list) * printf("Name: %s\n", child->name); */ #define list_for_each(h, i, member) \ list_for_each_off(h, i, list_off_var_(i, member)) /** * list_for_each_rev - iterate through a list backwards. * @h: the list_head * @i: the structure containing the list_node * @member: the list_node member of the structure * * This is a convenient wrapper to iterate @i over the entire list. It's * a for loop, so you can break and continue as normal. * * Example: * list_for_each_rev(&parent->children, child, list) * printf("Name: %s\n", child->name); */ #define list_for_each_rev(h, i, member) \ list_for_each_rev_off(h, i, list_off_var_(i, member)) /** * list_for_each_rev_safe - iterate through a list backwards, * maybe during deletion * @h: the list_head * @i: the structure containing the list_node * @nxt: the structure containing the list_node * @member: the list_node member of the structure * * This is a convenient wrapper to iterate @i over the entire list backwards. * It's a for loop, so you can break and continue as normal. The extra * variable * @nxt is used to hold the next element, so you can delete @i * from the list. * * Example: * struct child *next; * list_for_each_rev_safe(&parent->children, child, next, list) { * printf("Name: %s\n", child->name); * } */ #define list_for_each_rev_safe(h, i, nxt, member) \ list_for_each_rev_safe_off(h, i, nxt, list_off_var_(i, member)) /** * list_for_each_safe - iterate through a list, maybe during deletion * @h: the list_head * @i: the structure containing the list_node * @nxt: the structure containing the list_node * @member: the list_node member of the structure * * This is a convenient wrapper to iterate @i over the entire list. It's * a for loop, so you can break and continue as normal. The extra variable * @nxt is used to hold the next element, so you can delete @i from the list. * * Example: * list_for_each_safe(&parent->children, child, next, list) { * list_del(&child->list); * parent->num_children--; * } */ #define list_for_each_safe(h, i, nxt, member) \ list_for_each_safe_off(h, i, nxt, list_off_var_(i, member)) /** * list_next - get the next entry in a list * @h: the list_head * @i: a pointer to an entry in the list. * @member: the list_node member of the structure * * If @i was the last entry in the list, returns NULL. * * Example: * struct child *second; * second = list_next(&parent->children, first, list); * if (!second) * printf("No second child!\n"); */ #define list_next(h, i, member) \ ((list_typeof(i))list_entry_or_null(list_debug(h, \ __FILE__ ":" stringify(__LINE__)), \ (i)->member.next, \ list_off_var_((i), member))) /** * list_prev - get the previous entry in a list * @h: the list_head * @i: a pointer to an entry in the list. * @member: the list_node member of the structure * * If @i was the first entry in the list, returns NULL. * * Example: * first = list_prev(&parent->children, second, list); * if (!first) * printf("Can't go back to first child?!\n"); */ #define list_prev(h, i, member) \ ((list_typeof(i))list_entry_or_null(list_debug(h, \ __FILE__ ":" stringify(__LINE__)), \ (i)->member.prev, \ list_off_var_((i), member))) /** * list_append_list - empty one list onto the end of another. * @to: the list to append into * @from: the list to empty. * * This takes the entire contents of @from and moves it to the end of * @to. After this @from will be empty. * * Example: * struct list_head adopter; * * list_append_list(&adopter, &parent->children); * assert(list_empty(&parent->children)); * parent->num_children = 0; */ #define list_append_list(t, f) list_append_list_(t, f, \ __FILE__ ":" stringify(__LINE__)) static inline void list_append_list_(struct list_head *to, struct list_head *from, const char *abortstr) { struct list_node *from_tail = list_debug(from, abortstr)->n.prev; struct list_node *to_tail = list_debug(to, abortstr)->n.prev; /* Sew in head and entire list. */ to->n.prev = from_tail; from_tail->next = &to->n; to_tail->next = &from->n; from->n.prev = to_tail; /* Now remove head. */ list_del(&from->n); list_head_init(from); } /** * list_prepend_list - empty one list into the start of another. * @to: the list to prepend into * @from: the list to empty. * * This takes the entire contents of @from and moves it to the start * of @to. After this @from will be empty. * * Example: * list_prepend_list(&adopter, &parent->children); * assert(list_empty(&parent->children)); * parent->num_children = 0; */ #define list_prepend_list(t, f) list_prepend_list_(t, f, LIST_LOC) static inline void list_prepend_list_(struct list_head *to, struct list_head *from, const char *abortstr) { struct list_node *from_tail = list_debug(from, abortstr)->n.prev; struct list_node *to_head = list_debug(to, abortstr)->n.next; /* Sew in head and entire list. */ to->n.next = &from->n; from->n.prev = &to->n; to_head->prev = from_tail; from_tail->next = to_head; /* Now remove head. */ list_del(&from->n); list_head_init(from); } /* internal macros, do not use directly */ #define list_for_each_off_dir_(h, i, off, dir) \ for (i = list_node_to_off_(list_debug(h, LIST_LOC)->n.dir, \ (off)); \ list_node_from_off_((void *)i, (off)) != &(h)->n; \ i = list_node_to_off_(list_node_from_off_((void *)i, (off))->dir, \ (off))) #define list_for_each_safe_off_dir_(h, i, nxt, off, dir) \ for (i = list_node_to_off_(list_debug(h, LIST_LOC)->n.dir, \ (off)), \ nxt = list_node_to_off_(list_node_from_off_(i, (off))->dir, \ (off)); \ list_node_from_off_(i, (off)) != &(h)->n; \ i = nxt, \ nxt = list_node_to_off_(list_node_from_off_(i, (off))->dir, \ (off))) /** * list_for_each_off - iterate through a list of memory regions. * @h: the list_head * @i: the pointer to a memory region wich contains list node data. * @off: offset(relative to @i) at which list node data resides. * * This is a low-level wrapper to iterate @i over the entire list, used to * implement all oher, more high-level, for-each constructs. It's a for loop, * so you can break and continue as normal. * * WARNING! Being the low-level macro that it is, this wrapper doesn't know * nor care about the type of @i. The only assumtion made is that @i points * to a chunk of memory that at some @offset, relative to @i, contains a * properly filled `struct node_list' which in turn contains pointers to * memory chunks and it's turtles all the way down. Whith all that in mind * remember that given the wrong pointer/offset couple this macro will * happilly churn all you memory untill SEGFAULT stops it, in other words * caveat emptor. * * It is worth mentioning that one of legitimate use-cases for that wrapper * is operation on opaque types with known offset for `struct list_node' * member(preferably 0), because it allows you not to disclose the type of * @i. * * Example: * list_for_each_off(&parent->children, child, * offsetof(struct child, list)) * printf("Name: %s\n", child->name); */ #define list_for_each_off(h, i, off) \ list_for_each_off_dir_((h),(i),(off),next) /** * list_for_each_rev_off - iterate through a list of memory regions backwards * @h: the list_head * @i: the pointer to a memory region wich contains list node data. * @off: offset(relative to @i) at which list node data resides. * * See list_for_each_off for details */ #define list_for_each_rev_off(h, i, off) \ list_for_each_off_dir_((h),(i),(off),prev) /** * list_for_each_safe_off - iterate through a list of memory regions, maybe * during deletion * @h: the list_head * @i: the pointer to a memory region wich contains list node data. * @nxt: the structure containing the list_node * @off: offset(relative to @i) at which list node data resides. * * For details see `list_for_each_off' and `list_for_each_safe' * descriptions. * * Example: * list_for_each_safe_off(&parent->children, child, * next, offsetof(struct child, list)) * printf("Name: %s\n", child->name); */ #define list_for_each_safe_off(h, i, nxt, off) \ list_for_each_safe_off_dir_((h),(i),(nxt),(off),next) /** * list_for_each_rev_safe_off - iterate backwards through a list of * memory regions, maybe during deletion * @h: the list_head * @i: the pointer to a memory region wich contains list node data. * @nxt: the structure containing the list_node * @off: offset(relative to @i) at which list node data resides. * * For details see `list_for_each_rev_off' and `list_for_each_rev_safe' * descriptions. * * Example: * list_for_each_rev_safe_off(&parent->children, child, * next, offsetof(struct child, list)) * printf("Name: %s\n", child->name); */ #define list_for_each_rev_safe_off(h, i, nxt, off) \ list_for_each_safe_off_dir_((h),(i),(nxt),(off),prev) /* Other -off variants. */ #define list_entry_off(n, type, off) \ ((type *)list_node_from_off_((n), (off))) #define list_head_off(h, type, off) \ ((type *)list_head_off((h), (off))) #define list_tail_off(h, type, off) \ ((type *)list_tail_((h), (off))) #define list_add_off(h, n, off) \ list_add((h), list_node_from_off_((n), (off))) #define list_del_off(n, off) \ list_del(list_node_from_off_((n), (off))) #define list_del_from_off(h, n, off) \ list_del_from(h, list_node_from_off_((n), (off))) /* Offset helper functions so we only single-evaluate. */ static inline void *list_node_to_off_(struct list_node *node, size_t off) { return (void *)((char *)node - off); } static inline struct list_node *list_node_from_off_(void *ptr, size_t off) { return (struct list_node *)((char *)ptr + off); } /* Get the offset of the member, but make sure it's a list_node. */ #define list_off_(type, member) \ (container_off(type, member) + \ check_type(((type *)0)->member, struct list_node)) #define list_off_var_(var, member) \ (container_off_var(var, member) + \ check_type(var->member, struct list_node)) #if HAVE_TYPEOF #define list_typeof(var) typeof(var) #else #define list_typeof(var) void * #endif /* Returns member, or NULL if at end of list. */ static inline void *list_entry_or_null(const struct list_head *h, const struct list_node *n, size_t off) { if (n == &h->n) return NULL; return (char *)n - off; } #endif /* CCAN_LIST_H */