/* * Copyright (c) 2004, 2005 Topspin Communications. All rights reserved. * Copyright (c) 2004, 2011-2012 Intel Corporation. All rights reserved. * Copyright (c) 2005, 2006, 2007 Cisco Systems, Inc. All rights reserved. * Copyright (c) 2005 PathScale, Inc. All rights reserved. * Copyright (c) 2020 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef INFINIBAND_VERBS_H #define INFINIBAND_VERBS_H #include #include #include #include #include #include #include #include #include #ifdef __cplusplus #include #endif #if __GNUC__ >= 3 # define __attribute_const __attribute__((const)) #else # define __attribute_const #endif #ifdef __cplusplus extern "C" { #endif union ibv_gid { uint8_t raw[16]; struct { __be64 subnet_prefix; __be64 interface_id; } global; }; enum ibv_gid_type { IBV_GID_TYPE_IB, IBV_GID_TYPE_ROCE_V1, IBV_GID_TYPE_ROCE_V2, }; struct ibv_gid_entry { union ibv_gid gid; uint32_t gid_index; uint32_t port_num; uint32_t gid_type; /* enum ibv_gid_type */ uint32_t ndev_ifindex; }; #define vext_field_avail(type, fld, sz) (offsetof(type, fld) < (sz)) #ifdef __cplusplus #define __VERBS_ABI_IS_EXTENDED ((void *)std::numeric_limits::max()) #else #define __VERBS_ABI_IS_EXTENDED ((void *)UINTPTR_MAX) #endif enum ibv_node_type { IBV_NODE_UNKNOWN = -1, IBV_NODE_CA = 1, IBV_NODE_SWITCH, IBV_NODE_ROUTER, IBV_NODE_RNIC, IBV_NODE_USNIC, IBV_NODE_USNIC_UDP, IBV_NODE_UNSPECIFIED, }; enum ibv_transport_type { IBV_TRANSPORT_UNKNOWN = -1, IBV_TRANSPORT_IB = 0, IBV_TRANSPORT_IWARP, IBV_TRANSPORT_USNIC, IBV_TRANSPORT_USNIC_UDP, IBV_TRANSPORT_UNSPECIFIED, }; enum ibv_device_cap_flags { IBV_DEVICE_RESIZE_MAX_WR = 1, IBV_DEVICE_BAD_PKEY_CNTR = 1 << 1, IBV_DEVICE_BAD_QKEY_CNTR = 1 << 2, IBV_DEVICE_RAW_MULTI = 1 << 3, IBV_DEVICE_AUTO_PATH_MIG = 1 << 4, IBV_DEVICE_CHANGE_PHY_PORT = 1 << 5, IBV_DEVICE_UD_AV_PORT_ENFORCE = 1 << 6, IBV_DEVICE_CURR_QP_STATE_MOD = 1 << 7, IBV_DEVICE_SHUTDOWN_PORT = 1 << 8, IBV_DEVICE_INIT_TYPE = 1 << 9, IBV_DEVICE_PORT_ACTIVE_EVENT = 1 << 10, IBV_DEVICE_SYS_IMAGE_GUID = 1 << 11, IBV_DEVICE_RC_RNR_NAK_GEN = 1 << 12, IBV_DEVICE_SRQ_RESIZE = 1 << 13, IBV_DEVICE_N_NOTIFY_CQ = 1 << 14, IBV_DEVICE_MEM_WINDOW = 1 << 17, IBV_DEVICE_UD_IP_CSUM = 1 << 18, IBV_DEVICE_XRC = 1 << 20, IBV_DEVICE_MEM_MGT_EXTENSIONS = 1 << 21, IBV_DEVICE_MEM_WINDOW_TYPE_2A = 1 << 23, IBV_DEVICE_MEM_WINDOW_TYPE_2B = 1 << 24, IBV_DEVICE_RC_IP_CSUM = 1 << 25, IBV_DEVICE_RAW_IP_CSUM = 1 << 26, IBV_DEVICE_MANAGED_FLOW_STEERING = 1 << 29 }; enum ibv_fork_status { IBV_FORK_DISABLED, IBV_FORK_ENABLED, IBV_FORK_UNNEEDED, }; /* * Can't extended above ibv_device_cap_flags enum as in some systems/compilers * enum range is limited to 4 bytes. */ #define IBV_DEVICE_RAW_SCATTER_FCS (1ULL << 34) #define IBV_DEVICE_PCI_WRITE_END_PADDING (1ULL << 36) enum ibv_atomic_cap { IBV_ATOMIC_NONE, IBV_ATOMIC_HCA, IBV_ATOMIC_GLOB }; struct ibv_alloc_dm_attr { size_t length; uint32_t log_align_req; uint32_t comp_mask; }; enum ibv_dm_mask { IBV_DM_MASK_HANDLE = 1 << 0, }; struct ibv_dm { struct ibv_context *context; int (*memcpy_to_dm)(struct ibv_dm *dm, uint64_t dm_offset, const void *host_addr, size_t length); int (*memcpy_from_dm)(void *host_addr, struct ibv_dm *dm, uint64_t dm_offset, size_t length); uint32_t comp_mask; uint32_t handle; }; struct ibv_device_attr { char fw_ver[64]; __be64 node_guid; __be64 sys_image_guid; uint64_t max_mr_size; uint64_t page_size_cap; uint32_t vendor_id; uint32_t vendor_part_id; uint32_t hw_ver; int max_qp; int max_qp_wr; unsigned int device_cap_flags; int max_sge; int max_sge_rd; int max_cq; int max_cqe; int max_mr; int max_pd; int max_qp_rd_atom; int max_ee_rd_atom; int max_res_rd_atom; int max_qp_init_rd_atom; int max_ee_init_rd_atom; enum ibv_atomic_cap atomic_cap; int max_ee; int max_rdd; int max_mw; int max_raw_ipv6_qp; int max_raw_ethy_qp; int max_mcast_grp; int max_mcast_qp_attach; int max_total_mcast_qp_attach; int max_ah; int max_fmr; int max_map_per_fmr; int max_srq; int max_srq_wr; int max_srq_sge; uint16_t max_pkeys; uint8_t local_ca_ack_delay; uint8_t phys_port_cnt; }; /* An extensible input struct for possible future extensions of the * ibv_query_device_ex verb. */ struct ibv_query_device_ex_input { uint32_t comp_mask; }; enum ibv_odp_transport_cap_bits { IBV_ODP_SUPPORT_SEND = 1 << 0, IBV_ODP_SUPPORT_RECV = 1 << 1, IBV_ODP_SUPPORT_WRITE = 1 << 2, IBV_ODP_SUPPORT_READ = 1 << 3, IBV_ODP_SUPPORT_ATOMIC = 1 << 4, IBV_ODP_SUPPORT_SRQ_RECV = 1 << 5, }; struct ibv_odp_caps { uint64_t general_caps; struct { uint32_t rc_odp_caps; uint32_t uc_odp_caps; uint32_t ud_odp_caps; } per_transport_caps; }; enum ibv_odp_general_caps { IBV_ODP_SUPPORT = 1 << 0, IBV_ODP_SUPPORT_IMPLICIT = 1 << 1, }; struct ibv_tso_caps { uint32_t max_tso; uint32_t supported_qpts; }; /* RX Hash function flags */ enum ibv_rx_hash_function_flags { IBV_RX_HASH_FUNC_TOEPLITZ = 1 << 0, }; /* * RX Hash fields enable to set which incoming packet's field should * participates in RX Hash. Each flag represent certain packet's field, * when the flag is set the field that is represented by the flag will * participate in RX Hash calculation. * Note: *IPV4 and *IPV6 flags can't be enabled together on the same QP * and *TCP and *UDP flags can't be enabled together on the same QP. */ enum ibv_rx_hash_fields { IBV_RX_HASH_SRC_IPV4 = 1 << 0, IBV_RX_HASH_DST_IPV4 = 1 << 1, IBV_RX_HASH_SRC_IPV6 = 1 << 2, IBV_RX_HASH_DST_IPV6 = 1 << 3, IBV_RX_HASH_SRC_PORT_TCP = 1 << 4, IBV_RX_HASH_DST_PORT_TCP = 1 << 5, IBV_RX_HASH_SRC_PORT_UDP = 1 << 6, IBV_RX_HASH_DST_PORT_UDP = 1 << 7, IBV_RX_HASH_IPSEC_SPI = 1 << 8, IBV_RX_HASH_INNER = (1UL << 31), }; struct ibv_rss_caps { uint32_t supported_qpts; uint32_t max_rwq_indirection_tables; uint32_t max_rwq_indirection_table_size; uint64_t rx_hash_fields_mask; /* enum ibv_rx_hash_fields */ uint8_t rx_hash_function; /* enum ibv_rx_hash_function_flags */ }; struct ibv_packet_pacing_caps { uint32_t qp_rate_limit_min; uint32_t qp_rate_limit_max; /* In kbps */ uint32_t supported_qpts; }; enum ibv_raw_packet_caps { IBV_RAW_PACKET_CAP_CVLAN_STRIPPING = 1 << 0, IBV_RAW_PACKET_CAP_SCATTER_FCS = 1 << 1, IBV_RAW_PACKET_CAP_IP_CSUM = 1 << 2, IBV_RAW_PACKET_CAP_DELAY_DROP = 1 << 3, }; enum ibv_tm_cap_flags { IBV_TM_CAP_RC = 1 << 0, }; struct ibv_tm_caps { /* Max size of rendezvous request header */ uint32_t max_rndv_hdr_size; /* Max number of tagged buffers in a TM-SRQ matching list */ uint32_t max_num_tags; /* From enum ibv_tm_cap_flags */ uint32_t flags; /* Max number of outstanding list operations */ uint32_t max_ops; /* Max number of SGEs in a tagged buffer */ uint32_t max_sge; }; struct ibv_cq_moderation_caps { uint16_t max_cq_count; uint16_t max_cq_period; /* in micro seconds */ }; enum ibv_pci_atomic_op_size { IBV_PCI_ATOMIC_OPERATION_4_BYTE_SIZE_SUP = 1 << 0, IBV_PCI_ATOMIC_OPERATION_8_BYTE_SIZE_SUP = 1 << 1, IBV_PCI_ATOMIC_OPERATION_16_BYTE_SIZE_SUP = 1 << 2, }; /* * Bitmask for supported operation sizes * Use enum ibv_pci_atomic_op_size */ struct ibv_pci_atomic_caps { uint16_t fetch_add; uint16_t swap; uint16_t compare_swap; }; struct ibv_device_attr_ex { struct ibv_device_attr orig_attr; uint32_t comp_mask; struct ibv_odp_caps odp_caps; uint64_t completion_timestamp_mask; uint64_t hca_core_clock; uint64_t device_cap_flags_ex; struct ibv_tso_caps tso_caps; struct ibv_rss_caps rss_caps; uint32_t max_wq_type_rq; struct ibv_packet_pacing_caps packet_pacing_caps; uint32_t raw_packet_caps; /* Use ibv_raw_packet_caps */ struct ibv_tm_caps tm_caps; struct ibv_cq_moderation_caps cq_mod_caps; uint64_t max_dm_size; struct ibv_pci_atomic_caps pci_atomic_caps; uint32_t xrc_odp_caps; uint32_t phys_port_cnt_ex; }; enum ibv_mtu { IBV_MTU_256 = 1, IBV_MTU_512 = 2, IBV_MTU_1024 = 3, IBV_MTU_2048 = 4, IBV_MTU_4096 = 5 }; enum ibv_port_state { IBV_PORT_NOP = 0, IBV_PORT_DOWN = 1, IBV_PORT_INIT = 2, IBV_PORT_ARMED = 3, IBV_PORT_ACTIVE = 4, IBV_PORT_ACTIVE_DEFER = 5 }; enum { IBV_LINK_LAYER_UNSPECIFIED, IBV_LINK_LAYER_INFINIBAND, IBV_LINK_LAYER_ETHERNET, }; enum ibv_port_cap_flags { IBV_PORT_SM = 1 << 1, IBV_PORT_NOTICE_SUP = 1 << 2, IBV_PORT_TRAP_SUP = 1 << 3, IBV_PORT_OPT_IPD_SUP = 1 << 4, IBV_PORT_AUTO_MIGR_SUP = 1 << 5, IBV_PORT_SL_MAP_SUP = 1 << 6, IBV_PORT_MKEY_NVRAM = 1 << 7, IBV_PORT_PKEY_NVRAM = 1 << 8, IBV_PORT_LED_INFO_SUP = 1 << 9, IBV_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, IBV_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, IBV_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, IBV_PORT_CAP_MASK2_SUP = 1 << 15, IBV_PORT_CM_SUP = 1 << 16, IBV_PORT_SNMP_TUNNEL_SUP = 1 << 17, IBV_PORT_REINIT_SUP = 1 << 18, IBV_PORT_DEVICE_MGMT_SUP = 1 << 19, IBV_PORT_VENDOR_CLASS_SUP = 1 << 20, IBV_PORT_DR_NOTICE_SUP = 1 << 21, IBV_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, IBV_PORT_BOOT_MGMT_SUP = 1 << 23, IBV_PORT_LINK_LATENCY_SUP = 1 << 24, IBV_PORT_CLIENT_REG_SUP = 1 << 25, IBV_PORT_IP_BASED_GIDS = 1 << 26 }; enum ibv_port_cap_flags2 { IBV_PORT_SET_NODE_DESC_SUP = 1 << 0, IBV_PORT_INFO_EXT_SUP = 1 << 1, IBV_PORT_VIRT_SUP = 1 << 2, IBV_PORT_SWITCH_PORT_STATE_TABLE_SUP = 1 << 3, IBV_PORT_LINK_WIDTH_2X_SUP = 1 << 4, IBV_PORT_LINK_SPEED_HDR_SUP = 1 << 5, IBV_PORT_LINK_SPEED_NDR_SUP = 1 << 10, IBV_PORT_LINK_SPEED_XDR_SUP = 1 << 12, }; struct ibv_port_attr { enum ibv_port_state state; enum ibv_mtu max_mtu; enum ibv_mtu active_mtu; int gid_tbl_len; uint32_t port_cap_flags; uint32_t max_msg_sz; uint32_t bad_pkey_cntr; uint32_t qkey_viol_cntr; uint16_t pkey_tbl_len; uint16_t lid; uint16_t sm_lid; uint8_t lmc; uint8_t max_vl_num; uint8_t sm_sl; uint8_t subnet_timeout; uint8_t init_type_reply; uint8_t active_width; uint8_t active_speed; uint8_t phys_state; uint8_t link_layer; uint8_t flags; uint16_t port_cap_flags2; uint32_t active_speed_ex; }; enum ibv_event_type { IBV_EVENT_CQ_ERR, IBV_EVENT_QP_FATAL, IBV_EVENT_QP_REQ_ERR, IBV_EVENT_QP_ACCESS_ERR, IBV_EVENT_COMM_EST, IBV_EVENT_SQ_DRAINED, IBV_EVENT_PATH_MIG, IBV_EVENT_PATH_MIG_ERR, IBV_EVENT_DEVICE_FATAL, IBV_EVENT_PORT_ACTIVE, IBV_EVENT_PORT_ERR, IBV_EVENT_LID_CHANGE, IBV_EVENT_PKEY_CHANGE, IBV_EVENT_SM_CHANGE, IBV_EVENT_SRQ_ERR, IBV_EVENT_SRQ_LIMIT_REACHED, IBV_EVENT_QP_LAST_WQE_REACHED, IBV_EVENT_CLIENT_REREGISTER, IBV_EVENT_GID_CHANGE, IBV_EVENT_WQ_FATAL, }; struct ibv_async_event { union { struct ibv_cq *cq; struct ibv_qp *qp; struct ibv_srq *srq; struct ibv_wq *wq; int port_num; } element; enum ibv_event_type event_type; }; enum ibv_wc_status { IBV_WC_SUCCESS, IBV_WC_LOC_LEN_ERR, IBV_WC_LOC_QP_OP_ERR, IBV_WC_LOC_EEC_OP_ERR, IBV_WC_LOC_PROT_ERR, IBV_WC_WR_FLUSH_ERR, IBV_WC_MW_BIND_ERR, IBV_WC_BAD_RESP_ERR, IBV_WC_LOC_ACCESS_ERR, IBV_WC_REM_INV_REQ_ERR, IBV_WC_REM_ACCESS_ERR, IBV_WC_REM_OP_ERR, IBV_WC_RETRY_EXC_ERR, IBV_WC_RNR_RETRY_EXC_ERR, IBV_WC_LOC_RDD_VIOL_ERR, IBV_WC_REM_INV_RD_REQ_ERR, IBV_WC_REM_ABORT_ERR, IBV_WC_INV_EECN_ERR, IBV_WC_INV_EEC_STATE_ERR, IBV_WC_FATAL_ERR, IBV_WC_RESP_TIMEOUT_ERR, IBV_WC_GENERAL_ERR, IBV_WC_TM_ERR, IBV_WC_TM_RNDV_INCOMPLETE, }; const char *ibv_wc_status_str(enum ibv_wc_status status); enum ibv_wc_opcode { IBV_WC_SEND, IBV_WC_RDMA_WRITE, IBV_WC_RDMA_READ, IBV_WC_COMP_SWAP, IBV_WC_FETCH_ADD, IBV_WC_BIND_MW, IBV_WC_LOCAL_INV, IBV_WC_TSO, IBV_WC_FLUSH, IBV_WC_ATOMIC_WRITE = 9, /* * Set value of IBV_WC_RECV so consumers can test if a completion is a * receive by testing (opcode & IBV_WC_RECV). */ IBV_WC_RECV = 1 << 7, IBV_WC_RECV_RDMA_WITH_IMM, IBV_WC_TM_ADD, IBV_WC_TM_DEL, IBV_WC_TM_SYNC, IBV_WC_TM_RECV, IBV_WC_TM_NO_TAG, IBV_WC_DRIVER1, IBV_WC_DRIVER2, IBV_WC_DRIVER3, }; enum { IBV_WC_IP_CSUM_OK_SHIFT = 2 }; enum ibv_create_cq_wc_flags { IBV_WC_EX_WITH_BYTE_LEN = 1 << 0, IBV_WC_EX_WITH_IMM = 1 << 1, IBV_WC_EX_WITH_QP_NUM = 1 << 2, IBV_WC_EX_WITH_SRC_QP = 1 << 3, IBV_WC_EX_WITH_SLID = 1 << 4, IBV_WC_EX_WITH_SL = 1 << 5, IBV_WC_EX_WITH_DLID_PATH_BITS = 1 << 6, IBV_WC_EX_WITH_COMPLETION_TIMESTAMP = 1 << 7, IBV_WC_EX_WITH_CVLAN = 1 << 8, IBV_WC_EX_WITH_FLOW_TAG = 1 << 9, IBV_WC_EX_WITH_TM_INFO = 1 << 10, IBV_WC_EX_WITH_COMPLETION_TIMESTAMP_WALLCLOCK = 1 << 11, }; enum { IBV_WC_STANDARD_FLAGS = IBV_WC_EX_WITH_BYTE_LEN | IBV_WC_EX_WITH_IMM | IBV_WC_EX_WITH_QP_NUM | IBV_WC_EX_WITH_SRC_QP | IBV_WC_EX_WITH_SLID | IBV_WC_EX_WITH_SL | IBV_WC_EX_WITH_DLID_PATH_BITS }; enum { IBV_CREATE_CQ_SUP_WC_FLAGS = IBV_WC_STANDARD_FLAGS | IBV_WC_EX_WITH_COMPLETION_TIMESTAMP | IBV_WC_EX_WITH_CVLAN | IBV_WC_EX_WITH_FLOW_TAG | IBV_WC_EX_WITH_TM_INFO | IBV_WC_EX_WITH_COMPLETION_TIMESTAMP_WALLCLOCK }; enum ibv_wc_flags { IBV_WC_GRH = 1 << 0, IBV_WC_WITH_IMM = 1 << 1, IBV_WC_IP_CSUM_OK = 1 << IBV_WC_IP_CSUM_OK_SHIFT, IBV_WC_WITH_INV = 1 << 3, IBV_WC_TM_SYNC_REQ = 1 << 4, IBV_WC_TM_MATCH = 1 << 5, IBV_WC_TM_DATA_VALID = 1 << 6, }; struct ibv_wc { uint64_t wr_id; enum ibv_wc_status status; enum ibv_wc_opcode opcode; uint32_t vendor_err; uint32_t byte_len; /* When (wc_flags & IBV_WC_WITH_IMM): Immediate data in network byte order. * When (wc_flags & IBV_WC_WITH_INV): Stores the invalidated rkey. */ union { __be32 imm_data; uint32_t invalidated_rkey; }; uint32_t qp_num; uint32_t src_qp; unsigned int wc_flags; uint16_t pkey_index; uint16_t slid; uint8_t sl; uint8_t dlid_path_bits; }; enum ibv_access_flags { IBV_ACCESS_LOCAL_WRITE = 1, IBV_ACCESS_REMOTE_WRITE = (1<<1), IBV_ACCESS_REMOTE_READ = (1<<2), IBV_ACCESS_REMOTE_ATOMIC = (1<<3), IBV_ACCESS_MW_BIND = (1<<4), IBV_ACCESS_ZERO_BASED = (1<<5), IBV_ACCESS_ON_DEMAND = (1<<6), IBV_ACCESS_HUGETLB = (1<<7), IBV_ACCESS_FLUSH_GLOBAL = (1 << 8), IBV_ACCESS_FLUSH_PERSISTENT = (1 << 9), IBV_ACCESS_RELAXED_ORDERING = IBV_ACCESS_OPTIONAL_FIRST, }; struct ibv_mw_bind_info { struct ibv_mr *mr; uint64_t addr; uint64_t length; unsigned int mw_access_flags; /* use ibv_access_flags */ }; struct ibv_pd { struct ibv_context *context; uint32_t handle; }; struct ibv_td_init_attr { uint32_t comp_mask; }; struct ibv_td { struct ibv_context *context; }; enum ibv_xrcd_init_attr_mask { IBV_XRCD_INIT_ATTR_FD = 1 << 0, IBV_XRCD_INIT_ATTR_OFLAGS = 1 << 1, IBV_XRCD_INIT_ATTR_RESERVED = 1 << 2 }; struct ibv_xrcd_init_attr { uint32_t comp_mask; int fd; int oflags; }; struct ibv_xrcd { struct ibv_context *context; }; enum ibv_rereg_mr_flags { IBV_REREG_MR_CHANGE_TRANSLATION = (1 << 0), IBV_REREG_MR_CHANGE_PD = (1 << 1), IBV_REREG_MR_CHANGE_ACCESS = (1 << 2), IBV_REREG_MR_FLAGS_SUPPORTED = ((IBV_REREG_MR_CHANGE_ACCESS << 1) - 1) }; struct ibv_mr { struct ibv_context *context; struct ibv_pd *pd; void *addr; size_t length; uint32_t handle; uint32_t lkey; uint32_t rkey; }; enum ibv_mw_type { IBV_MW_TYPE_1 = 1, IBV_MW_TYPE_2 = 2 }; struct ibv_mw { struct ibv_context *context; struct ibv_pd *pd; uint32_t rkey; uint32_t handle; enum ibv_mw_type type; }; struct ibv_global_route { union ibv_gid dgid; uint32_t flow_label; uint8_t sgid_index; uint8_t hop_limit; uint8_t traffic_class; }; struct ibv_grh { __be32 version_tclass_flow; __be16 paylen; uint8_t next_hdr; uint8_t hop_limit; union ibv_gid sgid; union ibv_gid dgid; }; enum ibv_rate { IBV_RATE_MAX = 0, IBV_RATE_2_5_GBPS = 2, IBV_RATE_5_GBPS = 5, IBV_RATE_10_GBPS = 3, IBV_RATE_20_GBPS = 6, IBV_RATE_30_GBPS = 4, IBV_RATE_40_GBPS = 7, IBV_RATE_60_GBPS = 8, IBV_RATE_80_GBPS = 9, IBV_RATE_120_GBPS = 10, IBV_RATE_14_GBPS = 11, IBV_RATE_56_GBPS = 12, IBV_RATE_112_GBPS = 13, IBV_RATE_168_GBPS = 14, IBV_RATE_25_GBPS = 15, IBV_RATE_100_GBPS = 16, IBV_RATE_200_GBPS = 17, IBV_RATE_300_GBPS = 18, IBV_RATE_28_GBPS = 19, IBV_RATE_50_GBPS = 20, IBV_RATE_400_GBPS = 21, IBV_RATE_600_GBPS = 22, IBV_RATE_800_GBPS = 23, IBV_RATE_1200_GBPS = 24, }; /** * ibv_rate_to_mult - Convert the IB rate enum to a multiple of the * base rate of 2.5 Gbit/sec. For example, IBV_RATE_5_GBPS will be * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. * @rate: rate to convert. */ int __attribute_const ibv_rate_to_mult(enum ibv_rate rate); /** * mult_to_ibv_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate enum. * @mult: multiple to convert. */ enum ibv_rate __attribute_const mult_to_ibv_rate(int mult); /** * ibv_rate_to_mbps - Convert the IB rate enum to Mbit/sec. * For example, IBV_RATE_5_GBPS will return the value 5000. * @rate: rate to convert. */ int __attribute_const ibv_rate_to_mbps(enum ibv_rate rate); /** * mbps_to_ibv_rate - Convert a Mbit/sec value to an IB rate enum. * @mbps: value to convert. */ enum ibv_rate __attribute_const mbps_to_ibv_rate(int mbps); struct ibv_ah_attr { struct ibv_global_route grh; uint16_t dlid; uint8_t sl; uint8_t src_path_bits; uint8_t static_rate; uint8_t is_global; uint8_t port_num; }; enum ibv_srq_attr_mask { IBV_SRQ_MAX_WR = 1 << 0, IBV_SRQ_LIMIT = 1 << 1 }; struct ibv_srq_attr { uint32_t max_wr; uint32_t max_sge; uint32_t srq_limit; }; struct ibv_srq_init_attr { void *srq_context; struct ibv_srq_attr attr; }; enum ibv_srq_type { IBV_SRQT_BASIC, IBV_SRQT_XRC, IBV_SRQT_TM, }; enum ibv_srq_init_attr_mask { IBV_SRQ_INIT_ATTR_TYPE = 1 << 0, IBV_SRQ_INIT_ATTR_PD = 1 << 1, IBV_SRQ_INIT_ATTR_XRCD = 1 << 2, IBV_SRQ_INIT_ATTR_CQ = 1 << 3, IBV_SRQ_INIT_ATTR_TM = 1 << 4, IBV_SRQ_INIT_ATTR_RESERVED = 1 << 5, }; struct ibv_tm_cap { uint32_t max_num_tags; uint32_t max_ops; }; struct ibv_srq_init_attr_ex { void *srq_context; struct ibv_srq_attr attr; uint32_t comp_mask; enum ibv_srq_type srq_type; struct ibv_pd *pd; struct ibv_xrcd *xrcd; struct ibv_cq *cq; struct ibv_tm_cap tm_cap; }; enum ibv_wq_type { IBV_WQT_RQ }; enum ibv_wq_init_attr_mask { IBV_WQ_INIT_ATTR_FLAGS = 1 << 0, IBV_WQ_INIT_ATTR_RESERVED = 1 << 1, }; enum ibv_wq_flags { IBV_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, IBV_WQ_FLAGS_SCATTER_FCS = 1 << 1, IBV_WQ_FLAGS_DELAY_DROP = 1 << 2, IBV_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, IBV_WQ_FLAGS_RESERVED = 1 << 4, }; struct ibv_wq_init_attr { void *wq_context; enum ibv_wq_type wq_type; uint32_t max_wr; uint32_t max_sge; struct ibv_pd *pd; struct ibv_cq *cq; uint32_t comp_mask; /* Use ibv_wq_init_attr_mask */ uint32_t create_flags; /* use ibv_wq_flags */ }; enum ibv_wq_state { IBV_WQS_RESET, IBV_WQS_RDY, IBV_WQS_ERR, IBV_WQS_UNKNOWN }; enum ibv_wq_attr_mask { IBV_WQ_ATTR_STATE = 1 << 0, IBV_WQ_ATTR_CURR_STATE = 1 << 1, IBV_WQ_ATTR_FLAGS = 1 << 2, IBV_WQ_ATTR_RESERVED = 1 << 3, }; struct ibv_wq_attr { /* enum ibv_wq_attr_mask */ uint32_t attr_mask; /* Move the WQ to this state */ enum ibv_wq_state wq_state; /* Assume this is the current WQ state */ enum ibv_wq_state curr_wq_state; uint32_t flags; /* Use ibv_wq_flags */ uint32_t flags_mask; /* Use ibv_wq_flags */ }; /* * Receive Work Queue Indirection Table. * It's used in order to distribute incoming packets between different * Receive Work Queues. Associating Receive WQs with different CPU cores * allows one to workload the traffic between different CPU cores. * The Indirection Table can contain only WQs of type IBV_WQT_RQ. */ struct ibv_rwq_ind_table { struct ibv_context *context; int ind_tbl_handle; int ind_tbl_num; uint32_t comp_mask; }; enum ibv_ind_table_init_attr_mask { IBV_CREATE_IND_TABLE_RESERVED = (1 << 0) }; /* * Receive Work Queue Indirection Table attributes */ struct ibv_rwq_ind_table_init_attr { uint32_t log_ind_tbl_size; /* Each entry is a pointer to a Receive Work Queue */ struct ibv_wq **ind_tbl; uint32_t comp_mask; }; enum ibv_qp_type { IBV_QPT_RC = 2, IBV_QPT_UC, IBV_QPT_UD, IBV_QPT_RAW_PACKET = 8, IBV_QPT_XRC_SEND = 9, IBV_QPT_XRC_RECV, IBV_QPT_DRIVER = 0xff, }; struct ibv_qp_cap { uint32_t max_send_wr; uint32_t max_recv_wr; uint32_t max_send_sge; uint32_t max_recv_sge; uint32_t max_inline_data; }; struct ibv_qp_init_attr { void *qp_context; struct ibv_cq *send_cq; struct ibv_cq *recv_cq; struct ibv_srq *srq; struct ibv_qp_cap cap; enum ibv_qp_type qp_type; int sq_sig_all; }; enum ibv_qp_init_attr_mask { IBV_QP_INIT_ATTR_PD = 1 << 0, IBV_QP_INIT_ATTR_XRCD = 1 << 1, IBV_QP_INIT_ATTR_CREATE_FLAGS = 1 << 2, IBV_QP_INIT_ATTR_MAX_TSO_HEADER = 1 << 3, IBV_QP_INIT_ATTR_IND_TABLE = 1 << 4, IBV_QP_INIT_ATTR_RX_HASH = 1 << 5, IBV_QP_INIT_ATTR_SEND_OPS_FLAGS = 1 << 6, }; enum ibv_qp_create_flags { IBV_QP_CREATE_BLOCK_SELF_MCAST_LB = 1 << 1, IBV_QP_CREATE_SCATTER_FCS = 1 << 8, IBV_QP_CREATE_CVLAN_STRIPPING = 1 << 9, IBV_QP_CREATE_SOURCE_QPN = 1 << 10, IBV_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, }; enum ibv_qp_create_send_ops_flags { IBV_QP_EX_WITH_RDMA_WRITE = 1 << 0, IBV_QP_EX_WITH_RDMA_WRITE_WITH_IMM = 1 << 1, IBV_QP_EX_WITH_SEND = 1 << 2, IBV_QP_EX_WITH_SEND_WITH_IMM = 1 << 3, IBV_QP_EX_WITH_RDMA_READ = 1 << 4, IBV_QP_EX_WITH_ATOMIC_CMP_AND_SWP = 1 << 5, IBV_QP_EX_WITH_ATOMIC_FETCH_AND_ADD = 1 << 6, IBV_QP_EX_WITH_LOCAL_INV = 1 << 7, IBV_QP_EX_WITH_BIND_MW = 1 << 8, IBV_QP_EX_WITH_SEND_WITH_INV = 1 << 9, IBV_QP_EX_WITH_TSO = 1 << 10, IBV_QP_EX_WITH_FLUSH = 1 << 11, IBV_QP_EX_WITH_ATOMIC_WRITE = 1 << 12, }; struct ibv_rx_hash_conf { /* enum ibv_rx_hash_function_flags */ uint8_t rx_hash_function; uint8_t rx_hash_key_len; uint8_t *rx_hash_key; /* enum ibv_rx_hash_fields */ uint64_t rx_hash_fields_mask; }; struct ibv_qp_init_attr_ex { void *qp_context; struct ibv_cq *send_cq; struct ibv_cq *recv_cq; struct ibv_srq *srq; struct ibv_qp_cap cap; enum ibv_qp_type qp_type; int sq_sig_all; uint32_t comp_mask; struct ibv_pd *pd; struct ibv_xrcd *xrcd; uint32_t create_flags; uint16_t max_tso_header; struct ibv_rwq_ind_table *rwq_ind_tbl; struct ibv_rx_hash_conf rx_hash_conf; uint32_t source_qpn; /* See enum ibv_qp_create_send_ops_flags */ uint64_t send_ops_flags; }; enum ibv_qp_open_attr_mask { IBV_QP_OPEN_ATTR_NUM = 1 << 0, IBV_QP_OPEN_ATTR_XRCD = 1 << 1, IBV_QP_OPEN_ATTR_CONTEXT = 1 << 2, IBV_QP_OPEN_ATTR_TYPE = 1 << 3, IBV_QP_OPEN_ATTR_RESERVED = 1 << 4 }; struct ibv_qp_open_attr { uint32_t comp_mask; uint32_t qp_num; struct ibv_xrcd *xrcd; void *qp_context; enum ibv_qp_type qp_type; }; enum ibv_qp_attr_mask { IBV_QP_STATE = 1 << 0, IBV_QP_CUR_STATE = 1 << 1, IBV_QP_EN_SQD_ASYNC_NOTIFY = 1 << 2, IBV_QP_ACCESS_FLAGS = 1 << 3, IBV_QP_PKEY_INDEX = 1 << 4, IBV_QP_PORT = 1 << 5, IBV_QP_QKEY = 1 << 6, IBV_QP_AV = 1 << 7, IBV_QP_PATH_MTU = 1 << 8, IBV_QP_TIMEOUT = 1 << 9, IBV_QP_RETRY_CNT = 1 << 10, IBV_QP_RNR_RETRY = 1 << 11, IBV_QP_RQ_PSN = 1 << 12, IBV_QP_MAX_QP_RD_ATOMIC = 1 << 13, IBV_QP_ALT_PATH = 1 << 14, IBV_QP_MIN_RNR_TIMER = 1 << 15, IBV_QP_SQ_PSN = 1 << 16, IBV_QP_MAX_DEST_RD_ATOMIC = 1 << 17, IBV_QP_PATH_MIG_STATE = 1 << 18, IBV_QP_CAP = 1 << 19, IBV_QP_DEST_QPN = 1 << 20, /* These bits were supported on older kernels, but never exposed from libibverbs: _IBV_QP_SMAC = 1 << 21, _IBV_QP_ALT_SMAC = 1 << 22, _IBV_QP_VID = 1 << 23, _IBV_QP_ALT_VID = 1 << 24, */ IBV_QP_RATE_LIMIT = 1 << 25, }; enum ibv_query_qp_data_in_order_flags { IBV_QUERY_QP_DATA_IN_ORDER_RETURN_CAPS = 1 << 0, }; enum ibv_query_qp_data_in_order_caps { IBV_QUERY_QP_DATA_IN_ORDER_WHOLE_MSG = 1 << 0, IBV_QUERY_QP_DATA_IN_ORDER_ALIGNED_128_BYTES = 1 << 1, }; enum ibv_qp_state { IBV_QPS_RESET, IBV_QPS_INIT, IBV_QPS_RTR, IBV_QPS_RTS, IBV_QPS_SQD, IBV_QPS_SQE, IBV_QPS_ERR, IBV_QPS_UNKNOWN }; enum ibv_mig_state { IBV_MIG_MIGRATED, IBV_MIG_REARM, IBV_MIG_ARMED }; struct ibv_qp_attr { enum ibv_qp_state qp_state; enum ibv_qp_state cur_qp_state; enum ibv_mtu path_mtu; enum ibv_mig_state path_mig_state; uint32_t qkey; uint32_t rq_psn; uint32_t sq_psn; uint32_t dest_qp_num; unsigned int qp_access_flags; struct ibv_qp_cap cap; struct ibv_ah_attr ah_attr; struct ibv_ah_attr alt_ah_attr; uint16_t pkey_index; uint16_t alt_pkey_index; uint8_t en_sqd_async_notify; uint8_t sq_draining; uint8_t max_rd_atomic; uint8_t max_dest_rd_atomic; uint8_t min_rnr_timer; uint8_t port_num; uint8_t timeout; uint8_t retry_cnt; uint8_t rnr_retry; uint8_t alt_port_num; uint8_t alt_timeout; uint32_t rate_limit; }; struct ibv_qp_rate_limit_attr { uint32_t rate_limit; /* in kbps */ uint32_t max_burst_sz; /* total burst size in bytes */ uint16_t typical_pkt_sz; /* typical send packet size in bytes */ uint32_t comp_mask; }; enum ibv_wr_opcode { IBV_WR_RDMA_WRITE, IBV_WR_RDMA_WRITE_WITH_IMM, IBV_WR_SEND, IBV_WR_SEND_WITH_IMM, IBV_WR_RDMA_READ, IBV_WR_ATOMIC_CMP_AND_SWP, IBV_WR_ATOMIC_FETCH_AND_ADD, IBV_WR_LOCAL_INV, IBV_WR_BIND_MW, IBV_WR_SEND_WITH_INV, IBV_WR_TSO, IBV_WR_DRIVER1, IBV_WR_FLUSH = 14, IBV_WR_ATOMIC_WRITE = 15, }; const char *ibv_wr_opcode_str(enum ibv_wr_opcode opcode); enum ibv_send_flags { IBV_SEND_FENCE = 1 << 0, IBV_SEND_SIGNALED = 1 << 1, IBV_SEND_SOLICITED = 1 << 2, IBV_SEND_INLINE = 1 << 3, IBV_SEND_IP_CSUM = 1 << 4 }; enum ibv_placement_type { IBV_FLUSH_GLOBAL = 1U << 0, IBV_FLUSH_PERSISTENT = 1U << 1, }; enum ibv_selectivity_level { IBV_FLUSH_RANGE = 0, IBV_FLUSH_MR, }; struct ibv_data_buf { void *addr; size_t length; }; struct ibv_sge { uint64_t addr; uint32_t length; uint32_t lkey; }; struct ibv_send_wr { uint64_t wr_id; struct ibv_send_wr *next; struct ibv_sge *sg_list; int num_sge; enum ibv_wr_opcode opcode; unsigned int send_flags; /* When opcode is *_WITH_IMM: Immediate data in network byte order. * When opcode is *_INV: Stores the rkey to invalidate */ union { __be32 imm_data; uint32_t invalidate_rkey; }; union { struct { uint64_t remote_addr; uint32_t rkey; } rdma; struct { uint64_t remote_addr; uint64_t compare_add; uint64_t swap; uint32_t rkey; } atomic; struct { struct ibv_ah *ah; uint32_t remote_qpn; uint32_t remote_qkey; } ud; } wr; union { struct { uint32_t remote_srqn; } xrc; } qp_type; union { struct { struct ibv_mw *mw; uint32_t rkey; struct ibv_mw_bind_info bind_info; } bind_mw; struct { void *hdr; uint16_t hdr_sz; uint16_t mss; } tso; }; }; struct ibv_recv_wr { uint64_t wr_id; struct ibv_recv_wr *next; struct ibv_sge *sg_list; int num_sge; }; enum ibv_ops_wr_opcode { IBV_WR_TAG_ADD, IBV_WR_TAG_DEL, IBV_WR_TAG_SYNC, }; enum ibv_ops_flags { IBV_OPS_SIGNALED = 1 << 0, IBV_OPS_TM_SYNC = 1 << 1, }; struct ibv_ops_wr { uint64_t wr_id; struct ibv_ops_wr *next; enum ibv_ops_wr_opcode opcode; int flags; struct { uint32_t unexpected_cnt; uint32_t handle; struct { uint64_t recv_wr_id; struct ibv_sge *sg_list; int num_sge; uint64_t tag; uint64_t mask; } add; } tm; }; struct ibv_mw_bind { uint64_t wr_id; unsigned int send_flags; struct ibv_mw_bind_info bind_info; }; struct ibv_srq { struct ibv_context *context; void *srq_context; struct ibv_pd *pd; uint32_t handle; pthread_mutex_t mutex; pthread_cond_t cond; uint32_t events_completed; }; /* * Work Queue. QP can be created without internal WQs "packaged" inside it, * this QP can be configured to use "external" WQ object as its * receive/send queue. * WQ associated (many to one) with Completion Queue it owns WQ properties * (PD, WQ size etc). * WQ of type IBV_WQT_RQ: * - Contains receive WQEs, in this case its PD serves as scatter as well. * - Exposes post receive function to be used to post a list of work * requests (WRs) to its receive queue. */ struct ibv_wq { struct ibv_context *context; void *wq_context; struct ibv_pd *pd; struct ibv_cq *cq; uint32_t wq_num; uint32_t handle; enum ibv_wq_state state; enum ibv_wq_type wq_type; int (*post_recv)(struct ibv_wq *current, struct ibv_recv_wr *recv_wr, struct ibv_recv_wr **bad_recv_wr); pthread_mutex_t mutex; pthread_cond_t cond; uint32_t events_completed; uint32_t comp_mask; }; struct ibv_qp { struct ibv_context *context; void *qp_context; struct ibv_pd *pd; struct ibv_cq *send_cq; struct ibv_cq *recv_cq; struct ibv_srq *srq; uint32_t handle; uint32_t qp_num; enum ibv_qp_state state; enum ibv_qp_type qp_type; pthread_mutex_t mutex; pthread_cond_t cond; uint32_t events_completed; }; struct ibv_qp_ex { struct ibv_qp qp_base; uint64_t comp_mask; uint64_t wr_id; /* bitmask from enum ibv_send_flags */ unsigned int wr_flags; void (*wr_atomic_cmp_swp)(struct ibv_qp_ex *qp, uint32_t rkey, uint64_t remote_addr, uint64_t compare, uint64_t swap); void (*wr_atomic_fetch_add)(struct ibv_qp_ex *qp, uint32_t rkey, uint64_t remote_addr, uint64_t add); void (*wr_bind_mw)(struct ibv_qp_ex *qp, struct ibv_mw *mw, uint32_t rkey, const struct ibv_mw_bind_info *bind_info); void (*wr_local_inv)(struct ibv_qp_ex *qp, uint32_t invalidate_rkey); void (*wr_rdma_read)(struct ibv_qp_ex *qp, uint32_t rkey, uint64_t remote_addr); void (*wr_rdma_write)(struct ibv_qp_ex *qp, uint32_t rkey, uint64_t remote_addr); void (*wr_rdma_write_imm)(struct ibv_qp_ex *qp, uint32_t rkey, uint64_t remote_addr, __be32 imm_data); void (*wr_send)(struct ibv_qp_ex *qp); void (*wr_send_imm)(struct ibv_qp_ex *qp, __be32 imm_data); void (*wr_send_inv)(struct ibv_qp_ex *qp, uint32_t invalidate_rkey); void (*wr_send_tso)(struct ibv_qp_ex *qp, void *hdr, uint16_t hdr_sz, uint16_t mss); void (*wr_set_ud_addr)(struct ibv_qp_ex *qp, struct ibv_ah *ah, uint32_t remote_qpn, uint32_t remote_qkey); void (*wr_set_xrc_srqn)(struct ibv_qp_ex *qp, uint32_t remote_srqn); void (*wr_set_inline_data)(struct ibv_qp_ex *qp, void *addr, size_t length); void (*wr_set_inline_data_list)(struct ibv_qp_ex *qp, size_t num_buf, const struct ibv_data_buf *buf_list); void (*wr_set_sge)(struct ibv_qp_ex *qp, uint32_t lkey, uint64_t addr, uint32_t length); void (*wr_set_sge_list)(struct ibv_qp_ex *qp, size_t num_sge, const struct ibv_sge *sg_list); void (*wr_start)(struct ibv_qp_ex *qp); int (*wr_complete)(struct ibv_qp_ex *qp); void (*wr_abort)(struct ibv_qp_ex *qp); void (*wr_atomic_write)(struct ibv_qp_ex *qp, uint32_t rkey, uint64_t remote_addr, const void *atomic_wr); void (*wr_flush)(struct ibv_qp_ex *qp, uint32_t rkey, uint64_t remote_addr, size_t len, uint8_t type, uint8_t level); }; struct ibv_qp_ex *ibv_qp_to_qp_ex(struct ibv_qp *qp); static inline void ibv_wr_atomic_cmp_swp(struct ibv_qp_ex *qp, uint32_t rkey, uint64_t remote_addr, uint64_t compare, uint64_t swap) { qp->wr_atomic_cmp_swp(qp, rkey, remote_addr, compare, swap); } static inline void ibv_wr_atomic_fetch_add(struct ibv_qp_ex *qp, uint32_t rkey, uint64_t remote_addr, uint64_t add) { qp->wr_atomic_fetch_add(qp, rkey, remote_addr, add); } static inline void ibv_wr_bind_mw(struct ibv_qp_ex *qp, struct ibv_mw *mw, uint32_t rkey, const struct ibv_mw_bind_info *bind_info) { qp->wr_bind_mw(qp, mw, rkey, bind_info); } static inline void ibv_wr_local_inv(struct ibv_qp_ex *qp, uint32_t invalidate_rkey) { qp->wr_local_inv(qp, invalidate_rkey); } static inline void ibv_wr_rdma_read(struct ibv_qp_ex *qp, uint32_t rkey, uint64_t remote_addr) { qp->wr_rdma_read(qp, rkey, remote_addr); } static inline void ibv_wr_rdma_write(struct ibv_qp_ex *qp, uint32_t rkey, uint64_t remote_addr) { qp->wr_rdma_write(qp, rkey, remote_addr); } static inline void ibv_wr_flush(struct ibv_qp_ex *qp, uint32_t rkey, uint64_t remote_addr, size_t len, uint8_t type, uint8_t level) { qp->wr_flush(qp, rkey, remote_addr, len, type, level); } static inline void ibv_wr_rdma_write_imm(struct ibv_qp_ex *qp, uint32_t rkey, uint64_t remote_addr, __be32 imm_data) { qp->wr_rdma_write_imm(qp, rkey, remote_addr, imm_data); } static inline void ibv_wr_send(struct ibv_qp_ex *qp) { qp->wr_send(qp); } static inline void ibv_wr_send_imm(struct ibv_qp_ex *qp, __be32 imm_data) { qp->wr_send_imm(qp, imm_data); } static inline void ibv_wr_send_inv(struct ibv_qp_ex *qp, uint32_t invalidate_rkey) { qp->wr_send_inv(qp, invalidate_rkey); } static inline void ibv_wr_send_tso(struct ibv_qp_ex *qp, void *hdr, uint16_t hdr_sz, uint16_t mss) { qp->wr_send_tso(qp, hdr, hdr_sz, mss); } static inline void ibv_wr_set_ud_addr(struct ibv_qp_ex *qp, struct ibv_ah *ah, uint32_t remote_qpn, uint32_t remote_qkey) { qp->wr_set_ud_addr(qp, ah, remote_qpn, remote_qkey); } static inline void ibv_wr_set_xrc_srqn(struct ibv_qp_ex *qp, uint32_t remote_srqn) { qp->wr_set_xrc_srqn(qp, remote_srqn); } static inline void ibv_wr_set_inline_data(struct ibv_qp_ex *qp, void *addr, size_t length) { qp->wr_set_inline_data(qp, addr, length); } static inline void ibv_wr_set_inline_data_list(struct ibv_qp_ex *qp, size_t num_buf, const struct ibv_data_buf *buf_list) { qp->wr_set_inline_data_list(qp, num_buf, buf_list); } static inline void ibv_wr_set_sge(struct ibv_qp_ex *qp, uint32_t lkey, uint64_t addr, uint32_t length) { qp->wr_set_sge(qp, lkey, addr, length); } static inline void ibv_wr_set_sge_list(struct ibv_qp_ex *qp, size_t num_sge, const struct ibv_sge *sg_list) { qp->wr_set_sge_list(qp, num_sge, sg_list); } static inline void ibv_wr_start(struct ibv_qp_ex *qp) { qp->wr_start(qp); } static inline int ibv_wr_complete(struct ibv_qp_ex *qp) { return qp->wr_complete(qp); } static inline void ibv_wr_abort(struct ibv_qp_ex *qp) { qp->wr_abort(qp); } static inline void ibv_wr_atomic_write(struct ibv_qp_ex *qp, uint32_t rkey, uint64_t remote_addr, const void *atomic_wr) { qp->wr_atomic_write(qp, rkey, remote_addr, atomic_wr); } struct ibv_ece { /* * Unique identifier of the provider vendor on the network. * The providers will set IEEE OUI here to distinguish * itself in non-homogenius network. */ uint32_t vendor_id; /* * Provider specific attributes which are supported or * needed to be enabled by ECE users. */ uint32_t options; uint32_t comp_mask; }; struct ibv_comp_channel { struct ibv_context *context; int fd; int refcnt; }; struct ibv_cq { struct ibv_context *context; struct ibv_comp_channel *channel; void *cq_context; uint32_t handle; int cqe; pthread_mutex_t mutex; pthread_cond_t cond; uint32_t comp_events_completed; uint32_t async_events_completed; }; struct ibv_poll_cq_attr { uint32_t comp_mask; }; struct ibv_wc_tm_info { uint64_t tag; /* tag from TMH */ uint32_t priv; /* opaque user data from TMH */ }; struct ibv_cq_ex { struct ibv_context *context; struct ibv_comp_channel *channel; void *cq_context; uint32_t handle; int cqe; pthread_mutex_t mutex; pthread_cond_t cond; uint32_t comp_events_completed; uint32_t async_events_completed; uint32_t comp_mask; enum ibv_wc_status status; uint64_t wr_id; int (*start_poll)(struct ibv_cq_ex *current, struct ibv_poll_cq_attr *attr); int (*next_poll)(struct ibv_cq_ex *current); void (*end_poll)(struct ibv_cq_ex *current); enum ibv_wc_opcode (*read_opcode)(struct ibv_cq_ex *current); uint32_t (*read_vendor_err)(struct ibv_cq_ex *current); uint32_t (*read_byte_len)(struct ibv_cq_ex *current); __be32 (*read_imm_data)(struct ibv_cq_ex *current); uint32_t (*read_qp_num)(struct ibv_cq_ex *current); uint32_t (*read_src_qp)(struct ibv_cq_ex *current); unsigned int (*read_wc_flags)(struct ibv_cq_ex *current); uint32_t (*read_slid)(struct ibv_cq_ex *current); uint8_t (*read_sl)(struct ibv_cq_ex *current); uint8_t (*read_dlid_path_bits)(struct ibv_cq_ex *current); uint64_t (*read_completion_ts)(struct ibv_cq_ex *current); uint16_t (*read_cvlan)(struct ibv_cq_ex *current); uint32_t (*read_flow_tag)(struct ibv_cq_ex *current); void (*read_tm_info)(struct ibv_cq_ex *current, struct ibv_wc_tm_info *tm_info); uint64_t (*read_completion_wallclock_ns)(struct ibv_cq_ex *current); }; static inline struct ibv_cq *ibv_cq_ex_to_cq(struct ibv_cq_ex *cq) { return (struct ibv_cq *)cq; } enum ibv_cq_attr_mask { IBV_CQ_ATTR_MODERATE = 1 << 0, IBV_CQ_ATTR_RESERVED = 1 << 1, }; struct ibv_moderate_cq { uint16_t cq_count; uint16_t cq_period; /* in micro seconds */ }; struct ibv_modify_cq_attr { uint32_t attr_mask; struct ibv_moderate_cq moderate; }; static inline int ibv_start_poll(struct ibv_cq_ex *cq, struct ibv_poll_cq_attr *attr) { return cq->start_poll(cq, attr); } static inline int ibv_next_poll(struct ibv_cq_ex *cq) { return cq->next_poll(cq); } static inline void ibv_end_poll(struct ibv_cq_ex *cq) { cq->end_poll(cq); } static inline enum ibv_wc_opcode ibv_wc_read_opcode(struct ibv_cq_ex *cq) { return cq->read_opcode(cq); } static inline uint32_t ibv_wc_read_vendor_err(struct ibv_cq_ex *cq) { return cq->read_vendor_err(cq); } static inline uint32_t ibv_wc_read_byte_len(struct ibv_cq_ex *cq) { return cq->read_byte_len(cq); } static inline __be32 ibv_wc_read_imm_data(struct ibv_cq_ex *cq) { return cq->read_imm_data(cq); } static inline uint32_t ibv_wc_read_invalidated_rkey(struct ibv_cq_ex *cq) { #ifdef __CHECKER__ return (__attribute__((force)) uint32_t)cq->read_imm_data(cq); #else return cq->read_imm_data(cq); #endif } static inline uint32_t ibv_wc_read_qp_num(struct ibv_cq_ex *cq) { return cq->read_qp_num(cq); } static inline uint32_t ibv_wc_read_src_qp(struct ibv_cq_ex *cq) { return cq->read_src_qp(cq); } static inline unsigned int ibv_wc_read_wc_flags(struct ibv_cq_ex *cq) { return cq->read_wc_flags(cq); } static inline uint32_t ibv_wc_read_slid(struct ibv_cq_ex *cq) { return cq->read_slid(cq); } static inline uint8_t ibv_wc_read_sl(struct ibv_cq_ex *cq) { return cq->read_sl(cq); } static inline uint8_t ibv_wc_read_dlid_path_bits(struct ibv_cq_ex *cq) { return cq->read_dlid_path_bits(cq); } static inline uint64_t ibv_wc_read_completion_ts(struct ibv_cq_ex *cq) { return cq->read_completion_ts(cq); } static inline uint64_t ibv_wc_read_completion_wallclock_ns(struct ibv_cq_ex *cq) { return cq->read_completion_wallclock_ns(cq); } static inline uint16_t ibv_wc_read_cvlan(struct ibv_cq_ex *cq) { return cq->read_cvlan(cq); } static inline uint32_t ibv_wc_read_flow_tag(struct ibv_cq_ex *cq) { return cq->read_flow_tag(cq); } static inline void ibv_wc_read_tm_info(struct ibv_cq_ex *cq, struct ibv_wc_tm_info *tm_info) { cq->read_tm_info(cq, tm_info); } static inline int ibv_post_wq_recv(struct ibv_wq *wq, struct ibv_recv_wr *recv_wr, struct ibv_recv_wr **bad_recv_wr) { return wq->post_recv(wq, recv_wr, bad_recv_wr); } struct ibv_ah { struct ibv_context *context; struct ibv_pd *pd; uint32_t handle; }; enum ibv_flow_flags { /* First bit is deprecated and can't be used */ IBV_FLOW_ATTR_FLAGS_DONT_TRAP = 1 << 1, IBV_FLOW_ATTR_FLAGS_EGRESS = 1 << 2, }; enum ibv_flow_attr_type { /* steering according to rule specifications */ IBV_FLOW_ATTR_NORMAL = 0x0, /* default unicast and multicast rule - * receive all Eth traffic which isn't steered to any QP */ IBV_FLOW_ATTR_ALL_DEFAULT = 0x1, /* default multicast rule - * receive all Eth multicast traffic which isn't steered to any QP */ IBV_FLOW_ATTR_MC_DEFAULT = 0x2, /* sniffer rule - receive all port traffic */ IBV_FLOW_ATTR_SNIFFER = 0x3, }; enum ibv_flow_spec_type { IBV_FLOW_SPEC_ETH = 0x20, IBV_FLOW_SPEC_IPV4 = 0x30, IBV_FLOW_SPEC_IPV6 = 0x31, IBV_FLOW_SPEC_IPV4_EXT = 0x32, IBV_FLOW_SPEC_ESP = 0x34, IBV_FLOW_SPEC_TCP = 0x40, IBV_FLOW_SPEC_UDP = 0x41, IBV_FLOW_SPEC_VXLAN_TUNNEL = 0x50, IBV_FLOW_SPEC_GRE = 0x51, IBV_FLOW_SPEC_MPLS = 0x60, IBV_FLOW_SPEC_INNER = 0x100, IBV_FLOW_SPEC_ACTION_TAG = 0x1000, IBV_FLOW_SPEC_ACTION_DROP = 0x1001, IBV_FLOW_SPEC_ACTION_HANDLE = 0x1002, IBV_FLOW_SPEC_ACTION_COUNT = 0x1003, }; #define ETHERNET_LL_SIZE ETH_ALEN struct ibv_flow_eth_filter { uint8_t dst_mac[ETHERNET_LL_SIZE]; uint8_t src_mac[ETHERNET_LL_SIZE]; uint16_t ether_type; /* * same layout as 802.1q: prio 3, cfi 1, vlan id 12 */ uint16_t vlan_tag; }; struct ibv_flow_spec_eth { enum ibv_flow_spec_type type; uint16_t size; struct ibv_flow_eth_filter val; struct ibv_flow_eth_filter mask; }; struct ibv_flow_ipv4_filter { uint32_t src_ip; uint32_t dst_ip; }; struct ibv_flow_spec_ipv4 { enum ibv_flow_spec_type type; uint16_t size; struct ibv_flow_ipv4_filter val; struct ibv_flow_ipv4_filter mask; }; struct ibv_flow_ipv4_ext_filter { uint32_t src_ip; uint32_t dst_ip; uint8_t proto; uint8_t tos; uint8_t ttl; uint8_t flags; }; struct ibv_flow_spec_ipv4_ext { enum ibv_flow_spec_type type; uint16_t size; struct ibv_flow_ipv4_ext_filter val; struct ibv_flow_ipv4_ext_filter mask; }; struct ibv_flow_ipv6_filter { uint8_t src_ip[16]; uint8_t dst_ip[16]; uint32_t flow_label; uint8_t next_hdr; uint8_t traffic_class; uint8_t hop_limit; }; struct ibv_flow_spec_ipv6 { enum ibv_flow_spec_type type; uint16_t size; struct ibv_flow_ipv6_filter val; struct ibv_flow_ipv6_filter mask; }; struct ibv_flow_esp_filter { uint32_t spi; uint32_t seq; }; struct ibv_flow_spec_esp { enum ibv_flow_spec_type type; uint16_t size; struct ibv_flow_esp_filter val; struct ibv_flow_esp_filter mask; }; struct ibv_flow_tcp_udp_filter { uint16_t dst_port; uint16_t src_port; }; struct ibv_flow_spec_tcp_udp { enum ibv_flow_spec_type type; uint16_t size; struct ibv_flow_tcp_udp_filter val; struct ibv_flow_tcp_udp_filter mask; }; struct ibv_flow_gre_filter { /* c_ks_res0_ver field is bits 0-15 in offset 0 of a standard GRE header: * bit 0 - checksum present bit. * bit 1 - reserved. set to 0. * bit 2 - key present bit. * bit 3 - sequence number present bit. * bits 4:12 - reserved. set to 0. * bits 13:15 - GRE version. */ uint16_t c_ks_res0_ver; uint16_t protocol; uint32_t key; }; struct ibv_flow_spec_gre { enum ibv_flow_spec_type type; uint16_t size; struct ibv_flow_gre_filter val; struct ibv_flow_gre_filter mask; }; struct ibv_flow_mpls_filter { /* The field includes the entire MPLS label: * bits 0:19 - label value field. * bits 20:22 - traffic class field. * bits 23 - bottom of stack bit. * bits 24:31 - ttl field. */ uint32_t label; }; struct ibv_flow_spec_mpls { enum ibv_flow_spec_type type; uint16_t size; struct ibv_flow_mpls_filter val; struct ibv_flow_mpls_filter mask; }; struct ibv_flow_tunnel_filter { uint32_t tunnel_id; }; struct ibv_flow_spec_tunnel { enum ibv_flow_spec_type type; uint16_t size; struct ibv_flow_tunnel_filter val; struct ibv_flow_tunnel_filter mask; }; struct ibv_flow_spec_action_tag { enum ibv_flow_spec_type type; uint16_t size; uint32_t tag_id; }; struct ibv_flow_spec_action_drop { enum ibv_flow_spec_type type; uint16_t size; }; struct ibv_flow_spec_action_handle { enum ibv_flow_spec_type type; uint16_t size; const struct ibv_flow_action *action; }; struct ibv_flow_spec_counter_action { enum ibv_flow_spec_type type; uint16_t size; struct ibv_counters *counters; }; struct ibv_flow_spec { union { struct { enum ibv_flow_spec_type type; uint16_t size; } hdr; struct ibv_flow_spec_eth eth; struct ibv_flow_spec_ipv4 ipv4; struct ibv_flow_spec_tcp_udp tcp_udp; struct ibv_flow_spec_ipv4_ext ipv4_ext; struct ibv_flow_spec_ipv6 ipv6; struct ibv_flow_spec_esp esp; struct ibv_flow_spec_tunnel tunnel; struct ibv_flow_spec_gre gre; struct ibv_flow_spec_mpls mpls; struct ibv_flow_spec_action_tag flow_tag; struct ibv_flow_spec_action_drop drop; struct ibv_flow_spec_action_handle handle; struct ibv_flow_spec_counter_action flow_count; }; }; struct ibv_flow_attr { uint32_t comp_mask; enum ibv_flow_attr_type type; uint16_t size; uint16_t priority; uint8_t num_of_specs; uint8_t port; uint32_t flags; /* Following are the optional layers according to user request * struct ibv_flow_spec_xxx [L2] * struct ibv_flow_spec_yyy [L3/L4] */ }; struct ibv_flow { uint32_t comp_mask; struct ibv_context *context; uint32_t handle; }; struct ibv_flow_action { struct ibv_context *context; }; enum ibv_flow_action_esp_mask { IBV_FLOW_ACTION_ESP_MASK_ESN = 1UL << 0, }; struct ibv_flow_action_esp_attr { struct ibv_flow_action_esp *esp_attr; enum ibv_flow_action_esp_keymat keymat_proto; uint16_t keymat_len; void *keymat_ptr; enum ibv_flow_action_esp_replay replay_proto; uint16_t replay_len; void *replay_ptr; struct ibv_flow_action_esp_encap *esp_encap; uint32_t comp_mask; /* Use enum ibv_flow_action_esp_mask */ uint32_t esn; }; struct ibv_device; struct ibv_context; /* Obsolete, never used, do not touch */ struct _ibv_device_ops { struct ibv_context * (*_dummy1)(struct ibv_device *device, int cmd_fd); void (*_dummy2)(struct ibv_context *context); }; enum { IBV_SYSFS_NAME_MAX = 64, IBV_SYSFS_PATH_MAX = 256 }; struct ibv_device { struct _ibv_device_ops _ops; enum ibv_node_type node_type; enum ibv_transport_type transport_type; /* Name of underlying kernel IB device, eg "mthca0" */ char name[IBV_SYSFS_NAME_MAX]; /* Name of uverbs device, eg "uverbs0" */ char dev_name[IBV_SYSFS_NAME_MAX]; /* Path to infiniband_verbs class device in sysfs */ char dev_path[IBV_SYSFS_PATH_MAX]; /* Path to infiniband class device in sysfs */ char ibdev_path[IBV_SYSFS_PATH_MAX]; }; struct _compat_ibv_port_attr; struct ibv_context_ops { int (*_compat_query_device)(struct ibv_context *context, struct ibv_device_attr *device_attr); int (*_compat_query_port)(struct ibv_context *context, uint8_t port_num, struct _compat_ibv_port_attr *port_attr); void *(*_compat_alloc_pd)(void); void *(*_compat_dealloc_pd)(void); void *(*_compat_reg_mr)(void); void *(*_compat_rereg_mr)(void); void *(*_compat_dereg_mr)(void); struct ibv_mw * (*alloc_mw)(struct ibv_pd *pd, enum ibv_mw_type type); int (*bind_mw)(struct ibv_qp *qp, struct ibv_mw *mw, struct ibv_mw_bind *mw_bind); int (*dealloc_mw)(struct ibv_mw *mw); void *(*_compat_create_cq)(void); int (*poll_cq)(struct ibv_cq *cq, int num_entries, struct ibv_wc *wc); int (*req_notify_cq)(struct ibv_cq *cq, int solicited_only); void *(*_compat_cq_event)(void); void *(*_compat_resize_cq)(void); void *(*_compat_destroy_cq)(void); void *(*_compat_create_srq)(void); void *(*_compat_modify_srq)(void); void *(*_compat_query_srq)(void); void *(*_compat_destroy_srq)(void); int (*post_srq_recv)(struct ibv_srq *srq, struct ibv_recv_wr *recv_wr, struct ibv_recv_wr **bad_recv_wr); void *(*_compat_create_qp)(void); void *(*_compat_query_qp)(void); void *(*_compat_modify_qp)(void); void *(*_compat_destroy_qp)(void); int (*post_send)(struct ibv_qp *qp, struct ibv_send_wr *wr, struct ibv_send_wr **bad_wr); int (*post_recv)(struct ibv_qp *qp, struct ibv_recv_wr *wr, struct ibv_recv_wr **bad_wr); void *(*_compat_create_ah)(void); void *(*_compat_destroy_ah)(void); void *(*_compat_attach_mcast)(void); void *(*_compat_detach_mcast)(void); void *(*_compat_async_event)(void); }; struct ibv_context { struct ibv_device *device; struct ibv_context_ops ops; int cmd_fd; int async_fd; int num_comp_vectors; pthread_mutex_t mutex; void *abi_compat; }; enum ibv_cq_init_attr_mask { IBV_CQ_INIT_ATTR_MASK_FLAGS = 1 << 0, IBV_CQ_INIT_ATTR_MASK_PD = 1 << 1, }; enum ibv_create_cq_attr_flags { IBV_CREATE_CQ_ATTR_SINGLE_THREADED = 1 << 0, IBV_CREATE_CQ_ATTR_IGNORE_OVERRUN = 1 << 1, }; struct ibv_cq_init_attr_ex { /* Minimum number of entries required for CQ */ uint32_t cqe; /* Consumer-supplied context returned for completion events */ void *cq_context; /* Completion channel where completion events will be queued. * May be NULL if completion events will not be used. */ struct ibv_comp_channel *channel; /* Completion vector used to signal completion events. * Must be < context->num_comp_vectors. */ uint32_t comp_vector; /* Or'ed bit of enum ibv_create_cq_wc_flags. */ uint64_t wc_flags; /* compatibility mask (extended verb). Or'd flags of * enum ibv_cq_init_attr_mask */ uint32_t comp_mask; /* create cq attr flags - one or more flags from * enum ibv_create_cq_attr_flags */ uint32_t flags; struct ibv_pd *parent_domain; }; enum ibv_parent_domain_init_attr_mask { IBV_PARENT_DOMAIN_INIT_ATTR_ALLOCATORS = 1 << 0, IBV_PARENT_DOMAIN_INIT_ATTR_PD_CONTEXT = 1 << 1, }; #define IBV_ALLOCATOR_USE_DEFAULT ((void *)-1) struct ibv_parent_domain_init_attr { struct ibv_pd *pd; /* reference to a protection domain object, can't be NULL */ struct ibv_td *td; /* reference to a thread domain object, or NULL */ uint32_t comp_mask; void *(*alloc)(struct ibv_pd *pd, void *pd_context, size_t size, size_t alignment, uint64_t resource_type); void (*free)(struct ibv_pd *pd, void *pd_context, void *ptr, uint64_t resource_type); void *pd_context; }; struct ibv_counters_init_attr { uint32_t comp_mask; }; struct ibv_counters { struct ibv_context *context; }; enum ibv_counter_description { IBV_COUNTER_PACKETS, IBV_COUNTER_BYTES, }; struct ibv_counter_attach_attr { enum ibv_counter_description counter_desc; uint32_t index; /* Desired location index of the counter at the counters object */ uint32_t comp_mask; }; enum ibv_read_counters_flags { IBV_READ_COUNTERS_ATTR_PREFER_CACHED = 1 << 0, }; enum ibv_values_mask { IBV_VALUES_MASK_RAW_CLOCK = 1 << 0, IBV_VALUES_MASK_RESERVED = 1 << 1 }; struct ibv_values_ex { uint32_t comp_mask; struct timespec raw_clock; }; struct verbs_context { /* "grows up" - new fields go here */ int (*query_port)(struct ibv_context *context, uint8_t port_num, struct ibv_port_attr *port_attr, size_t port_attr_len); int (*advise_mr)(struct ibv_pd *pd, enum ibv_advise_mr_advice advice, uint32_t flags, struct ibv_sge *sg_list, uint32_t num_sges); struct ibv_mr *(*alloc_null_mr)(struct ibv_pd *pd); int (*read_counters)(struct ibv_counters *counters, uint64_t *counters_value, uint32_t ncounters, uint32_t flags); int (*attach_counters_point_flow)(struct ibv_counters *counters, struct ibv_counter_attach_attr *attr, struct ibv_flow *flow); struct ibv_counters *(*create_counters)(struct ibv_context *context, struct ibv_counters_init_attr *init_attr); int (*destroy_counters)(struct ibv_counters *counters); struct ibv_mr *(*reg_dm_mr)(struct ibv_pd *pd, struct ibv_dm *dm, uint64_t dm_offset, size_t length, unsigned int access); struct ibv_dm *(*alloc_dm)(struct ibv_context *context, struct ibv_alloc_dm_attr *attr); int (*free_dm)(struct ibv_dm *dm); int (*modify_flow_action_esp)(struct ibv_flow_action *action, struct ibv_flow_action_esp_attr *attr); int (*destroy_flow_action)(struct ibv_flow_action *action); struct ibv_flow_action *(*create_flow_action_esp)(struct ibv_context *context, struct ibv_flow_action_esp_attr *attr); int (*modify_qp_rate_limit)(struct ibv_qp *qp, struct ibv_qp_rate_limit_attr *attr); struct ibv_pd *(*alloc_parent_domain)(struct ibv_context *context, struct ibv_parent_domain_init_attr *attr); int (*dealloc_td)(struct ibv_td *td); struct ibv_td *(*alloc_td)(struct ibv_context *context, struct ibv_td_init_attr *init_attr); int (*modify_cq)(struct ibv_cq *cq, struct ibv_modify_cq_attr *attr); int (*post_srq_ops)(struct ibv_srq *srq, struct ibv_ops_wr *op, struct ibv_ops_wr **bad_op); int (*destroy_rwq_ind_table)(struct ibv_rwq_ind_table *rwq_ind_table); struct ibv_rwq_ind_table *(*create_rwq_ind_table)(struct ibv_context *context, struct ibv_rwq_ind_table_init_attr *init_attr); int (*destroy_wq)(struct ibv_wq *wq); int (*modify_wq)(struct ibv_wq *wq, struct ibv_wq_attr *wq_attr); struct ibv_wq * (*create_wq)(struct ibv_context *context, struct ibv_wq_init_attr *wq_init_attr); int (*query_rt_values)(struct ibv_context *context, struct ibv_values_ex *values); struct ibv_cq_ex *(*create_cq_ex)(struct ibv_context *context, struct ibv_cq_init_attr_ex *init_attr); struct verbs_ex_private *priv; int (*query_device_ex)(struct ibv_context *context, const struct ibv_query_device_ex_input *input, struct ibv_device_attr_ex *attr, size_t attr_size); int (*ibv_destroy_flow) (struct ibv_flow *flow); void (*ABI_placeholder2) (void); /* DO NOT COPY THIS GARBAGE */ struct ibv_flow * (*ibv_create_flow) (struct ibv_qp *qp, struct ibv_flow_attr *flow_attr); void (*ABI_placeholder1) (void); /* DO NOT COPY THIS GARBAGE */ struct ibv_qp *(*open_qp)(struct ibv_context *context, struct ibv_qp_open_attr *attr); struct ibv_qp *(*create_qp_ex)(struct ibv_context *context, struct ibv_qp_init_attr_ex *qp_init_attr_ex); int (*get_srq_num)(struct ibv_srq *srq, uint32_t *srq_num); struct ibv_srq * (*create_srq_ex)(struct ibv_context *context, struct ibv_srq_init_attr_ex *srq_init_attr_ex); struct ibv_xrcd * (*open_xrcd)(struct ibv_context *context, struct ibv_xrcd_init_attr *xrcd_init_attr); int (*close_xrcd)(struct ibv_xrcd *xrcd); uint64_t _ABI_placeholder3; size_t sz; /* Must be immediately before struct ibv_context */ struct ibv_context context; /* Must be last field in the struct */ }; static inline struct verbs_context *verbs_get_ctx(struct ibv_context *ctx) { if (ctx->abi_compat != __VERBS_ABI_IS_EXTENDED) return NULL; /* open code container_of to not pollute the global namespace */ return (struct verbs_context *)(((uint8_t *)ctx) - offsetof(struct verbs_context, context)); } #define verbs_get_ctx_op(ctx, op) ({ \ struct verbs_context *__vctx = verbs_get_ctx(ctx); \ (!__vctx || (__vctx->sz < sizeof(*__vctx) - offsetof(struct verbs_context, op)) || \ !__vctx->op) ? NULL : __vctx; }) /** * ibv_get_device_list - Get list of IB devices currently available * @num_devices: optional. if non-NULL, set to the number of devices * returned in the array. * * Return a NULL-terminated array of IB devices. The array can be * released with ibv_free_device_list(). */ struct ibv_device **ibv_get_device_list(int *num_devices); /* * When statically linking the user can set RDMA_STATIC_PROVIDERS to a comma * separated list of provider names to include in the static link, and this * machinery will cause those providers to be included statically. * * Linking will fail if this is set for dynamic linking. */ #ifdef RDMA_STATIC_PROVIDERS #define _RDMA_STATIC_PREFIX_(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, \ _12, _13, _14, _15, _16, _17, _18, _19, ...) \ &verbs_provider_##_1, &verbs_provider_##_2, &verbs_provider_##_3, \ &verbs_provider_##_4, &verbs_provider_##_5, \ &verbs_provider_##_6, &verbs_provider_##_7, \ &verbs_provider_##_8, &verbs_provider_##_9, \ &verbs_provider_##_10, &verbs_provider_##_11, \ &verbs_provider_##_12, &verbs_provider_##_13, \ &verbs_provider_##_14, &verbs_provider_##_15, \ &verbs_provider_##_16, &verbs_provider_##_17, \ &verbs_provider_##_18, &verbs_provider_##_19 #define _RDMA_STATIC_PREFIX(arg) \ _RDMA_STATIC_PREFIX_(arg, none, none, none, none, none, none, none, \ none, none, none, none, none, none, none, none, \ none, none, none) struct verbs_devices_ops; extern const struct verbs_device_ops verbs_provider_bnxt_re; extern const struct verbs_device_ops verbs_provider_cxgb4; extern const struct verbs_device_ops verbs_provider_efa; extern const struct verbs_device_ops verbs_provider_erdma; extern const struct verbs_device_ops verbs_provider_hfi1verbs; extern const struct verbs_device_ops verbs_provider_hns; extern const struct verbs_device_ops verbs_provider_ipathverbs; extern const struct verbs_device_ops verbs_provider_irdma; extern const struct verbs_device_ops verbs_provider_mana; extern const struct verbs_device_ops verbs_provider_mlx4; extern const struct verbs_device_ops verbs_provider_mlx5; extern const struct verbs_device_ops verbs_provider_mthca; extern const struct verbs_device_ops verbs_provider_ocrdma; extern const struct verbs_device_ops verbs_provider_qedr; extern const struct verbs_device_ops verbs_provider_rxe; extern const struct verbs_device_ops verbs_provider_siw; extern const struct verbs_device_ops verbs_provider_vmw_pvrdma; extern const struct verbs_device_ops verbs_provider_all; extern const struct verbs_device_ops verbs_provider_none; void ibv_static_providers(void *unused, ...); static inline struct ibv_device **__ibv_get_device_list(int *num_devices) { ibv_static_providers(NULL, _RDMA_STATIC_PREFIX(RDMA_STATIC_PROVIDERS), NULL); return ibv_get_device_list(num_devices); } #define ibv_get_device_list(num_devices) __ibv_get_device_list(num_devices) #endif /** * ibv_free_device_list - Free list from ibv_get_device_list() * * Free an array of devices returned from ibv_get_device_list(). Once * the array is freed, pointers to devices that were not opened with * ibv_open_device() are no longer valid. Client code must open all * devices it intends to use before calling ibv_free_device_list(). */ void ibv_free_device_list(struct ibv_device **list); /** * ibv_get_device_name - Return kernel device name */ const char *ibv_get_device_name(struct ibv_device *device); /** * ibv_get_device_index - Return kernel device index * * Available for the kernel with support of IB device query * over netlink interface. For the unsupported kernels, the * relevant -1 will be returned. */ int ibv_get_device_index(struct ibv_device *device); /** * ibv_get_device_guid - Return device's node GUID */ __be64 ibv_get_device_guid(struct ibv_device *device); /** * ibv_open_device - Initialize device for use */ struct ibv_context *ibv_open_device(struct ibv_device *device); /** * ibv_close_device - Release device */ int ibv_close_device(struct ibv_context *context); /** * ibv_import_device - Import device */ struct ibv_context *ibv_import_device(int cmd_fd); /** * ibv_import_pd - Import a protetion domain */ struct ibv_pd *ibv_import_pd(struct ibv_context *context, uint32_t pd_handle); /** * ibv_unimport_pd - Unimport a protetion domain */ void ibv_unimport_pd(struct ibv_pd *pd); /** * ibv_import_mr - Import a memory region */ struct ibv_mr *ibv_import_mr(struct ibv_pd *pd, uint32_t mr_handle); /** * ibv_unimport_mr - Unimport a memory region */ void ibv_unimport_mr(struct ibv_mr *mr); /** * ibv_import_dm - Import a device memory */ struct ibv_dm *ibv_import_dm(struct ibv_context *context, uint32_t dm_handle); /** * ibv_unimport_dm - Unimport a device memory */ void ibv_unimport_dm(struct ibv_dm *dm); /** * ibv_get_async_event - Get next async event * @event: Pointer to use to return async event * * All async events returned by ibv_get_async_event() must eventually * be acknowledged with ibv_ack_async_event(). */ int ibv_get_async_event(struct ibv_context *context, struct ibv_async_event *event); /** * ibv_ack_async_event - Acknowledge an async event * @event: Event to be acknowledged. * * All async events which are returned by ibv_get_async_event() must * be acknowledged. To avoid races, destroying an object (CQ, SRQ or * QP) will wait for all affiliated events to be acknowledged, so * there should be a one-to-one correspondence between acks and * successful gets. */ void ibv_ack_async_event(struct ibv_async_event *event); /** * ibv_query_device - Get device properties */ int ibv_query_device(struct ibv_context *context, struct ibv_device_attr *device_attr); /** * ibv_query_port - Get port properties */ int ibv_query_port(struct ibv_context *context, uint8_t port_num, struct _compat_ibv_port_attr *port_attr); static inline int ___ibv_query_port(struct ibv_context *context, uint8_t port_num, struct ibv_port_attr *port_attr) { struct verbs_context *vctx = verbs_get_ctx_op(context, query_port); if (!vctx) { int rc; memset(port_attr, 0, sizeof(*port_attr)); rc = ibv_query_port(context, port_num, (struct _compat_ibv_port_attr *)port_attr); return rc; } return vctx->query_port(context, port_num, port_attr, sizeof(*port_attr)); } #define ibv_query_port(context, port_num, port_attr) \ ___ibv_query_port(context, port_num, port_attr) /** * ibv_query_gid - Get a GID table entry */ int ibv_query_gid(struct ibv_context *context, uint8_t port_num, int index, union ibv_gid *gid); int _ibv_query_gid_ex(struct ibv_context *context, uint32_t port_num, uint32_t gid_index, struct ibv_gid_entry *entry, uint32_t flags, size_t entry_size); /** * ibv_query_gid_ex - Read a GID table entry */ static inline int ibv_query_gid_ex(struct ibv_context *context, uint32_t port_num, uint32_t gid_index, struct ibv_gid_entry *entry, uint32_t flags) { return _ibv_query_gid_ex(context, port_num, gid_index, entry, flags, sizeof(*entry)); } ssize_t _ibv_query_gid_table(struct ibv_context *context, struct ibv_gid_entry *entries, size_t max_entries, uint32_t flags, size_t entry_size); /* * ibv_query_gid_table - Get all valid GID table entries */ static inline ssize_t ibv_query_gid_table(struct ibv_context *context, struct ibv_gid_entry *entries, size_t max_entries, uint32_t flags) { return _ibv_query_gid_table(context, entries, max_entries, flags, sizeof(*entries)); } /** * ibv_query_pkey - Get a P_Key table entry */ int ibv_query_pkey(struct ibv_context *context, uint8_t port_num, int index, __be16 *pkey); /** * ibv_get_pkey_index - Translate a P_Key into a P_Key index */ int ibv_get_pkey_index(struct ibv_context *context, uint8_t port_num, __be16 pkey); /** * ibv_alloc_pd - Allocate a protection domain */ struct ibv_pd *ibv_alloc_pd(struct ibv_context *context); /** * ibv_dealloc_pd - Free a protection domain */ int ibv_dealloc_pd(struct ibv_pd *pd); static inline struct ibv_flow *ibv_create_flow(struct ibv_qp *qp, struct ibv_flow_attr *flow) { struct verbs_context *vctx = verbs_get_ctx_op(qp->context, ibv_create_flow); if (!vctx) { errno = EOPNOTSUPP; return NULL; } return vctx->ibv_create_flow(qp, flow); } static inline int ibv_destroy_flow(struct ibv_flow *flow_id) { struct verbs_context *vctx = verbs_get_ctx_op(flow_id->context, ibv_destroy_flow); if (!vctx) return EOPNOTSUPP; return vctx->ibv_destroy_flow(flow_id); } static inline struct ibv_flow_action * ibv_create_flow_action_esp(struct ibv_context *ctx, struct ibv_flow_action_esp_attr *esp) { struct verbs_context *vctx = verbs_get_ctx_op(ctx, create_flow_action_esp); if (!vctx) { errno = EOPNOTSUPP; return NULL; } return vctx->create_flow_action_esp(ctx, esp); } static inline int ibv_modify_flow_action_esp(struct ibv_flow_action *action, struct ibv_flow_action_esp_attr *esp) { struct verbs_context *vctx = verbs_get_ctx_op(action->context, modify_flow_action_esp); if (!vctx) return EOPNOTSUPP; return vctx->modify_flow_action_esp(action, esp); } static inline int ibv_destroy_flow_action(struct ibv_flow_action *action) { struct verbs_context *vctx = verbs_get_ctx_op(action->context, destroy_flow_action); if (!vctx) return EOPNOTSUPP; return vctx->destroy_flow_action(action); } /** * ibv_open_xrcd - Open an extended connection domain */ static inline struct ibv_xrcd * ibv_open_xrcd(struct ibv_context *context, struct ibv_xrcd_init_attr *xrcd_init_attr) { struct verbs_context *vctx = verbs_get_ctx_op(context, open_xrcd); if (!vctx) { errno = EOPNOTSUPP; return NULL; } return vctx->open_xrcd(context, xrcd_init_attr); } /** * ibv_close_xrcd - Close an extended connection domain */ static inline int ibv_close_xrcd(struct ibv_xrcd *xrcd) { struct verbs_context *vctx = verbs_get_ctx(xrcd->context); return vctx->close_xrcd(xrcd); } /** * ibv_reg_mr_iova2 - Register memory region with a virtual offset address * * This version will be called if ibv_reg_mr or ibv_reg_mr_iova were called * with at least one potential access flag from the IBV_OPTIONAL_ACCESS_RANGE * flags range The optional access flags will be masked if running over kernel * that does not support passing them. */ struct ibv_mr *ibv_reg_mr_iova2(struct ibv_pd *pd, void *addr, size_t length, uint64_t iova, unsigned int access); /** * ibv_reg_mr - Register a memory region */ struct ibv_mr *ibv_reg_mr(struct ibv_pd *pd, void *addr, size_t length, int access); /* use new ibv_reg_mr version only if access flags that require it are used */ __attribute__((__always_inline__)) static inline struct ibv_mr * __ibv_reg_mr(struct ibv_pd *pd, void *addr, size_t length, unsigned int access, int is_access_const) { if (is_access_const && (access & IBV_ACCESS_OPTIONAL_RANGE) == 0) return ibv_reg_mr(pd, addr, length, (int)access); else return ibv_reg_mr_iova2(pd, addr, length, (uintptr_t)addr, access); } #define ibv_reg_mr(pd, addr, length, access) \ __ibv_reg_mr(pd, addr, length, access, \ __builtin_constant_p( \ ((int)(access) & IBV_ACCESS_OPTIONAL_RANGE) == 0)) /** * ibv_reg_mr_iova - Register a memory region with a virtual offset * address */ struct ibv_mr *ibv_reg_mr_iova(struct ibv_pd *pd, void *addr, size_t length, uint64_t iova, int access); /* use new ibv_reg_mr version only if access flags that require it are used */ __attribute__((__always_inline__)) static inline struct ibv_mr * __ibv_reg_mr_iova(struct ibv_pd *pd, void *addr, size_t length, uint64_t iova, unsigned int access, int is_access_const) { if (is_access_const && (access & IBV_ACCESS_OPTIONAL_RANGE) == 0) return ibv_reg_mr_iova(pd, addr, length, iova, (int)access); else return ibv_reg_mr_iova2(pd, addr, length, iova, access); } #define ibv_reg_mr_iova(pd, addr, length, iova, access) \ __ibv_reg_mr_iova(pd, addr, length, iova, access, \ __builtin_constant_p( \ ((access) & IBV_ACCESS_OPTIONAL_RANGE) == 0)) /** * ibv_reg_dmabuf_mr - Register a dmabuf-based memory region */ struct ibv_mr *ibv_reg_dmabuf_mr(struct ibv_pd *pd, uint64_t offset, size_t length, uint64_t iova, int fd, int access); enum ibv_rereg_mr_err_code { /* Old MR is valid, invalid input */ IBV_REREG_MR_ERR_INPUT = -1, /* Old MR is valid, failed via don't fork on new address range */ IBV_REREG_MR_ERR_DONT_FORK_NEW = -2, /* New MR is valid, failed via do fork on old address range */ IBV_REREG_MR_ERR_DO_FORK_OLD = -3, /* MR shouldn't be used, command error */ IBV_REREG_MR_ERR_CMD = -4, /* MR shouldn't be used, command error, invalid fork state on new address range */ IBV_REREG_MR_ERR_CMD_AND_DO_FORK_NEW = -5, }; /** * ibv_rereg_mr - Re-Register a memory region */ int ibv_rereg_mr(struct ibv_mr *mr, int flags, struct ibv_pd *pd, void *addr, size_t length, int access); /** * ibv_dereg_mr - Deregister a memory region */ int ibv_dereg_mr(struct ibv_mr *mr); /** * ibv_alloc_mw - Allocate a memory window */ static inline struct ibv_mw *ibv_alloc_mw(struct ibv_pd *pd, enum ibv_mw_type type) { struct ibv_mw *mw; if (!pd->context->ops.alloc_mw) { errno = EOPNOTSUPP; return NULL; } mw = pd->context->ops.alloc_mw(pd, type); return mw; } /** * ibv_dealloc_mw - Free a memory window */ static inline int ibv_dealloc_mw(struct ibv_mw *mw) { return mw->context->ops.dealloc_mw(mw); } /** * ibv_inc_rkey - Increase the 8 lsb in the given rkey */ static inline uint32_t ibv_inc_rkey(uint32_t rkey) { const uint32_t mask = 0x000000ff; uint8_t newtag = (uint8_t)((rkey + 1) & mask); return (rkey & ~mask) | newtag; } /** * ibv_bind_mw - Bind a memory window to a region */ static inline int ibv_bind_mw(struct ibv_qp *qp, struct ibv_mw *mw, struct ibv_mw_bind *mw_bind) { struct ibv_mw_bind_info *bind_info = &mw_bind->bind_info; if (mw->type != IBV_MW_TYPE_1) return EINVAL; if (!bind_info->mr && (bind_info->addr || bind_info->length)) return EINVAL; if (bind_info->mr && (mw->pd != bind_info->mr->pd)) return EPERM; return mw->context->ops.bind_mw(qp, mw, mw_bind); } /** * ibv_create_comp_channel - Create a completion event channel */ struct ibv_comp_channel *ibv_create_comp_channel(struct ibv_context *context); /** * ibv_destroy_comp_channel - Destroy a completion event channel */ int ibv_destroy_comp_channel(struct ibv_comp_channel *channel); /** * ibv_advise_mr - Gives advice about an address range in MRs * @pd - protection domain of all MRs for which the advice is for * @advice - type of advice * @flags - advice modifiers * @sg_list - an array of memory ranges * @num_sge - number of elements in the array */ static inline int ibv_advise_mr(struct ibv_pd *pd, enum ibv_advise_mr_advice advice, uint32_t flags, struct ibv_sge *sg_list, uint32_t num_sge) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(pd->context, advise_mr); if (!vctx) return EOPNOTSUPP; return vctx->advise_mr(pd, advice, flags, sg_list, num_sge); } /** * ibv_alloc_dm - Allocate device memory * @context - Context DM will be attached to * @attr - Attributes to allocate the DM with */ static inline struct ibv_dm *ibv_alloc_dm(struct ibv_context *context, struct ibv_alloc_dm_attr *attr) { struct verbs_context *vctx = verbs_get_ctx_op(context, alloc_dm); if (!vctx) { errno = EOPNOTSUPP; return NULL; } return vctx->alloc_dm(context, attr); } /** * ibv_free_dm - Free device allocated memory * @dm - The DM to free */ static inline int ibv_free_dm(struct ibv_dm *dm) { struct verbs_context *vctx = verbs_get_ctx_op(dm->context, free_dm); if (!vctx) return EOPNOTSUPP; return vctx->free_dm(dm); } /** * ibv_memcpy_to/from_dm - copy to/from device allocated memory * @dm - The DM to copy to/from * @dm_offset - Offset in bytes from beginning of DM to start copy to/form * @host_addr - Host memory address to copy to/from * @length - Number of bytes to copy */ static inline int ibv_memcpy_to_dm(struct ibv_dm *dm, uint64_t dm_offset, const void *host_addr, size_t length) { return dm->memcpy_to_dm(dm, dm_offset, host_addr, length); } static inline int ibv_memcpy_from_dm(void *host_addr, struct ibv_dm *dm, uint64_t dm_offset, size_t length) { return dm->memcpy_from_dm(host_addr, dm, dm_offset, length); } /* * ibv_alloc_null_mr - Allocate a null memory region. * @pd - The protection domain associated with the MR. */ static inline struct ibv_mr *ibv_alloc_null_mr(struct ibv_pd *pd) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(pd->context, alloc_null_mr); if (!vctx) { errno = EOPNOTSUPP; return NULL; } return vctx->alloc_null_mr(pd); } /** * ibv_reg_dm_mr - Register device memory as a memory region * @pd - The PD to associated this MR with * @dm - The DM to register * @dm_offset - Offset in bytes from beginning of DM to start registration from * @length - Number of bytes to register * @access - memory region access flags */ static inline struct ibv_mr *ibv_reg_dm_mr(struct ibv_pd *pd, struct ibv_dm *dm, uint64_t dm_offset, size_t length, unsigned int access) { struct verbs_context *vctx = verbs_get_ctx_op(pd->context, reg_dm_mr); if (!vctx) { errno = EOPNOTSUPP; return NULL; } return vctx->reg_dm_mr(pd, dm, dm_offset, length, access); } /** * ibv_create_cq - Create a completion queue * @context - Context CQ will be attached to * @cqe - Minimum number of entries required for CQ * @cq_context - Consumer-supplied context returned for completion events * @channel - Completion channel where completion events will be queued. * May be NULL if completion events will not be used. * @comp_vector - Completion vector used to signal completion events. * Must be >= 0 and < context->num_comp_vectors. */ struct ibv_cq *ibv_create_cq(struct ibv_context *context, int cqe, void *cq_context, struct ibv_comp_channel *channel, int comp_vector); /** * ibv_create_cq_ex - Create a completion queue * @context - Context CQ will be attached to * @cq_attr - Attributes to create the CQ with */ static inline struct ibv_cq_ex *ibv_create_cq_ex(struct ibv_context *context, struct ibv_cq_init_attr_ex *cq_attr) { struct verbs_context *vctx = verbs_get_ctx_op(context, create_cq_ex); if (!vctx) { errno = EOPNOTSUPP; return NULL; } return vctx->create_cq_ex(context, cq_attr); } /** * ibv_resize_cq - Modifies the capacity of the CQ. * @cq: The CQ to resize. * @cqe: The minimum size of the CQ. * * Users can examine the cq structure to determine the actual CQ size. */ int ibv_resize_cq(struct ibv_cq *cq, int cqe); /** * ibv_destroy_cq - Destroy a completion queue */ int ibv_destroy_cq(struct ibv_cq *cq); /** * ibv_get_cq_event - Read next CQ event * @channel: Channel to get next event from. * @cq: Used to return pointer to CQ. * @cq_context: Used to return consumer-supplied CQ context. * * All completion events returned by ibv_get_cq_event() must * eventually be acknowledged with ibv_ack_cq_events(). */ int ibv_get_cq_event(struct ibv_comp_channel *channel, struct ibv_cq **cq, void **cq_context); /** * ibv_ack_cq_events - Acknowledge CQ completion events * @cq: CQ to acknowledge events for * @nevents: Number of events to acknowledge. * * All completion events which are returned by ibv_get_cq_event() must * be acknowledged. To avoid races, ibv_destroy_cq() will wait for * all completion events to be acknowledged, so there should be a * one-to-one correspondence between acks and successful gets. An * application may accumulate multiple completion events and * acknowledge them in a single call to ibv_ack_cq_events() by passing * the number of events to ack in @nevents. */ void ibv_ack_cq_events(struct ibv_cq *cq, unsigned int nevents); /** * ibv_poll_cq - Poll a CQ for work completions * @cq:the CQ being polled * @num_entries:maximum number of completions to return * @wc:array of at least @num_entries of &struct ibv_wc where completions * will be returned * * Poll a CQ for (possibly multiple) completions. If the return value * is < 0, an error occurred. If the return value is >= 0, it is the * number of completions returned. If the return value is * non-negative and strictly less than num_entries, then the CQ was * emptied. */ static inline int ibv_poll_cq(struct ibv_cq *cq, int num_entries, struct ibv_wc *wc) { return cq->context->ops.poll_cq(cq, num_entries, wc); } /** * ibv_req_notify_cq - Request completion notification on a CQ. An * event will be added to the completion channel associated with the * CQ when an entry is added to the CQ. * @cq: The completion queue to request notification for. * @solicited_only: If non-zero, an event will be generated only for * the next solicited CQ entry. If zero, any CQ entry, solicited or * not, will generate an event. */ static inline int ibv_req_notify_cq(struct ibv_cq *cq, int solicited_only) { return cq->context->ops.req_notify_cq(cq, solicited_only); } static inline int ibv_modify_cq(struct ibv_cq *cq, struct ibv_modify_cq_attr *attr) { struct verbs_context *vctx = verbs_get_ctx_op(cq->context, modify_cq); if (!vctx) return EOPNOTSUPP; return vctx->modify_cq(cq, attr); } /** * ibv_create_srq - Creates a SRQ associated with the specified protection * domain. * @pd: The protection domain associated with the SRQ. * @srq_init_attr: A list of initial attributes required to create the SRQ. * * srq_attr->max_wr and srq_attr->max_sge are read the determine the * requested size of the SRQ, and set to the actual values allocated * on return. If ibv_create_srq() succeeds, then max_wr and max_sge * will always be at least as large as the requested values. */ struct ibv_srq *ibv_create_srq(struct ibv_pd *pd, struct ibv_srq_init_attr *srq_init_attr); static inline struct ibv_srq * ibv_create_srq_ex(struct ibv_context *context, struct ibv_srq_init_attr_ex *srq_init_attr_ex) { struct verbs_context *vctx; uint32_t mask = srq_init_attr_ex->comp_mask; if (!(mask & ~(uint32_t)(IBV_SRQ_INIT_ATTR_PD | IBV_SRQ_INIT_ATTR_TYPE)) && (mask & IBV_SRQ_INIT_ATTR_PD) && (!(mask & IBV_SRQ_INIT_ATTR_TYPE) || (srq_init_attr_ex->srq_type == IBV_SRQT_BASIC))) return ibv_create_srq(srq_init_attr_ex->pd, (struct ibv_srq_init_attr *)srq_init_attr_ex); vctx = verbs_get_ctx_op(context, create_srq_ex); if (!vctx) { errno = EOPNOTSUPP; return NULL; } return vctx->create_srq_ex(context, srq_init_attr_ex); } /** * ibv_modify_srq - Modifies the attributes for the specified SRQ. * @srq: The SRQ to modify. * @srq_attr: On input, specifies the SRQ attributes to modify. On output, * the current values of selected SRQ attributes are returned. * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ * are being modified. * * The mask may contain IBV_SRQ_MAX_WR to resize the SRQ and/or * IBV_SRQ_LIMIT to set the SRQ's limit and request notification when * the number of receives queued drops below the limit. */ int ibv_modify_srq(struct ibv_srq *srq, struct ibv_srq_attr *srq_attr, int srq_attr_mask); /** * ibv_query_srq - Returns the attribute list and current values for the * specified SRQ. * @srq: The SRQ to query. * @srq_attr: The attributes of the specified SRQ. */ int ibv_query_srq(struct ibv_srq *srq, struct ibv_srq_attr *srq_attr); static inline int ibv_get_srq_num(struct ibv_srq *srq, uint32_t *srq_num) { struct verbs_context *vctx = verbs_get_ctx_op(srq->context, get_srq_num); if (!vctx) return EOPNOTSUPP; return vctx->get_srq_num(srq, srq_num); } /** * ibv_destroy_srq - Destroys the specified SRQ. * @srq: The SRQ to destroy. */ int ibv_destroy_srq(struct ibv_srq *srq); /** * ibv_post_srq_recv - Posts a list of work requests to the specified SRQ. * @srq: The SRQ to post the work request on. * @recv_wr: A list of work requests to post on the receive queue. * @bad_recv_wr: On an immediate failure, this parameter will reference * the work request that failed to be posted on the QP. */ static inline int ibv_post_srq_recv(struct ibv_srq *srq, struct ibv_recv_wr *recv_wr, struct ibv_recv_wr **bad_recv_wr) { return srq->context->ops.post_srq_recv(srq, recv_wr, bad_recv_wr); } static inline int ibv_post_srq_ops(struct ibv_srq *srq, struct ibv_ops_wr *op, struct ibv_ops_wr **bad_op) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(srq->context, post_srq_ops); if (!vctx) { *bad_op = op; return EOPNOTSUPP; } return vctx->post_srq_ops(srq, op, bad_op); } /** * ibv_create_qp - Create a queue pair. */ struct ibv_qp *ibv_create_qp(struct ibv_pd *pd, struct ibv_qp_init_attr *qp_init_attr); static inline struct ibv_qp * ibv_create_qp_ex(struct ibv_context *context, struct ibv_qp_init_attr_ex *qp_init_attr_ex) { struct verbs_context *vctx; uint32_t mask = qp_init_attr_ex->comp_mask; if (mask == IBV_QP_INIT_ATTR_PD) return ibv_create_qp(qp_init_attr_ex->pd, (struct ibv_qp_init_attr *)qp_init_attr_ex); vctx = verbs_get_ctx_op(context, create_qp_ex); if (!vctx) { errno = EOPNOTSUPP; return NULL; } return vctx->create_qp_ex(context, qp_init_attr_ex); } /** * ibv_alloc_td - Allocate a thread domain */ static inline struct ibv_td *ibv_alloc_td(struct ibv_context *context, struct ibv_td_init_attr *init_attr) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(context, alloc_td); if (!vctx) { errno = EOPNOTSUPP; return NULL; } return vctx->alloc_td(context, init_attr); } /** * ibv_dealloc_td - Free a thread domain */ static inline int ibv_dealloc_td(struct ibv_td *td) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(td->context, dealloc_td); if (!vctx) return EOPNOTSUPP; return vctx->dealloc_td(td); } /** * ibv_alloc_parent_domain - Allocate a parent domain */ static inline struct ibv_pd * ibv_alloc_parent_domain(struct ibv_context *context, struct ibv_parent_domain_init_attr *attr) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(context, alloc_parent_domain); if (!vctx) { errno = EOPNOTSUPP; return NULL; } return vctx->alloc_parent_domain(context, attr); } /** * ibv_query_rt_values_ex - Get current real time @values of a device. * @values - in/out - defines the attributes we need to query/queried. * (Or's bits of enum ibv_values_mask on values->comp_mask field) */ static inline int ibv_query_rt_values_ex(struct ibv_context *context, struct ibv_values_ex *values) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(context, query_rt_values); if (!vctx) return EOPNOTSUPP; return vctx->query_rt_values(context, values); } /** * ibv_query_device_ex - Get extended device properties */ static inline int ibv_query_device_ex(struct ibv_context *context, const struct ibv_query_device_ex_input *input, struct ibv_device_attr_ex *attr) { struct verbs_context *vctx; int ret; if (input && input->comp_mask) return EINVAL; vctx = verbs_get_ctx_op(context, query_device_ex); if (!vctx) goto legacy; ret = vctx->query_device_ex(context, input, attr, sizeof(*attr)); if (ret == EOPNOTSUPP || ret == ENOSYS) goto legacy; return ret; legacy: memset(attr, 0, sizeof(*attr)); ret = ibv_query_device(context, &attr->orig_attr); return ret; } /** * ibv_open_qp - Open a shareable queue pair. */ static inline struct ibv_qp * ibv_open_qp(struct ibv_context *context, struct ibv_qp_open_attr *qp_open_attr) { struct verbs_context *vctx = verbs_get_ctx_op(context, open_qp); if (!vctx) { errno = EOPNOTSUPP; return NULL; } return vctx->open_qp(context, qp_open_attr); } /** * ibv_modify_qp - Modify a queue pair. */ int ibv_modify_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr, int attr_mask); /** * ibv_modify_qp_rate_limit - Modify a queue pair rate limit values * @qp - QP object to modify * @attr - Attributes to configure the rate limiting values of the QP */ static inline int ibv_modify_qp_rate_limit(struct ibv_qp *qp, struct ibv_qp_rate_limit_attr *attr) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(qp->context, modify_qp_rate_limit); if (!vctx) return EOPNOTSUPP; return vctx->modify_qp_rate_limit(qp, attr); } /** * ibv_query_qp_data_in_order - Checks whether the data is guaranteed to be * written in-order. * @qp: The QP to query. * @op: Operation type. * @flags: Flags are used to select a query type. * For IBV_QUERY_QP_DATA_IN_ORDER_RETURN_CAPS, the function will return a * capabilities vector. If 0, will query for IBV_QUERY_QP_DATA_IN_ORDER_WHOLE_MSG * support and return 0/1 result. * * Return Value * ibv_query_qp_data_in_order() return value is determined by flags. * For each capability bit, 1 is returned if the data is guaranteed to be * written in-order for selected operation and type, 0 otherwise. */ int ibv_query_qp_data_in_order(struct ibv_qp *qp, enum ibv_wr_opcode op, uint32_t flags); /** * ibv_query_qp - Returns the attribute list and current values for the * specified QP. * @qp: The QP to query. * @attr: The attributes of the specified QP. * @attr_mask: A bit-mask used to select specific attributes to query. * @init_attr: Additional attributes of the selected QP. * * The qp_attr_mask may be used to limit the query to gathering only the * selected attributes. */ int ibv_query_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr, int attr_mask, struct ibv_qp_init_attr *init_attr); /** * ibv_destroy_qp - Destroy a queue pair. */ int ibv_destroy_qp(struct ibv_qp *qp); /* * ibv_create_wq - Creates a WQ associated with the specified protection * domain. * @context: ibv_context. * @wq_init_attr: A list of initial attributes required to create the * WQ. If WQ creation succeeds, then the attributes are updated to * the actual capabilities of the created WQ. * * wq_init_attr->max_wr and wq_init_attr->max_sge determine * the requested size of the WQ, and set to the actual values allocated * on return. * If ibv_create_wq() succeeds, then max_wr and max_sge will always be * at least as large as the requested values. * * Return Value * ibv_create_wq() returns a pointer to the created WQ, or NULL if the request * fails. */ static inline struct ibv_wq *ibv_create_wq(struct ibv_context *context, struct ibv_wq_init_attr *wq_init_attr) { struct verbs_context *vctx = verbs_get_ctx_op(context, create_wq); struct ibv_wq *wq; if (!vctx) { errno = EOPNOTSUPP; return NULL; } wq = vctx->create_wq(context, wq_init_attr); if (wq) { wq->wq_context = wq_init_attr->wq_context; wq->events_completed = 0; pthread_mutex_init(&wq->mutex, NULL); pthread_cond_init(&wq->cond, NULL); } return wq; } /* * ibv_modify_wq - Modifies the attributes for the specified WQ. * @wq: The WQ to modify. * @wq_attr: On input, specifies the WQ attributes to modify. * wq_attr->attr_mask: A bit-mask used to specify which attributes of the WQ * are being modified. * On output, the current values of selected WQ attributes are returned. * * Return Value * ibv_modify_wq() returns 0 on success, or the value of errno * on failure (which indicates the failure reason). * */ static inline int ibv_modify_wq(struct ibv_wq *wq, struct ibv_wq_attr *wq_attr) { struct verbs_context *vctx = verbs_get_ctx_op(wq->context, modify_wq); if (!vctx) return EOPNOTSUPP; return vctx->modify_wq(wq, wq_attr); } /* * ibv_destroy_wq - Destroys the specified WQ. * @ibv_wq: The WQ to destroy. * Return Value * ibv_destroy_wq() returns 0 on success, or the value of errno * on failure (which indicates the failure reason). */ static inline int ibv_destroy_wq(struct ibv_wq *wq) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(wq->context, destroy_wq); if (!vctx) return EOPNOTSUPP; return vctx->destroy_wq(wq); } /* * ibv_create_rwq_ind_table - Creates a receive work queue Indirection Table * @context: ibv_context. * @init_attr: A list of initial attributes required to create the Indirection Table. * Return Value * ibv_create_rwq_ind_table returns a pointer to the created * Indirection Table, or NULL if the request fails. */ static inline struct ibv_rwq_ind_table *ibv_create_rwq_ind_table(struct ibv_context *context, struct ibv_rwq_ind_table_init_attr *init_attr) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(context, create_rwq_ind_table); if (!vctx) { errno = EOPNOTSUPP; return NULL; } return vctx->create_rwq_ind_table(context, init_attr); } /* * ibv_destroy_rwq_ind_table - Destroys the specified Indirection Table. * @rwq_ind_table: The Indirection Table to destroy. * Return Value * ibv_destroy_rwq_ind_table() returns 0 on success, or the value of errno * on failure (which indicates the failure reason). */ static inline int ibv_destroy_rwq_ind_table(struct ibv_rwq_ind_table *rwq_ind_table) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(rwq_ind_table->context, destroy_rwq_ind_table); if (!vctx) return EOPNOTSUPP; return vctx->destroy_rwq_ind_table(rwq_ind_table); } /** * ibv_post_send - Post a list of work requests to a send queue. * * If IBV_SEND_INLINE flag is set, the data buffers can be reused * immediately after the call returns. */ static inline int ibv_post_send(struct ibv_qp *qp, struct ibv_send_wr *wr, struct ibv_send_wr **bad_wr) { return qp->context->ops.post_send(qp, wr, bad_wr); } /** * ibv_post_recv - Post a list of work requests to a receive queue. */ static inline int ibv_post_recv(struct ibv_qp *qp, struct ibv_recv_wr *wr, struct ibv_recv_wr **bad_wr) { return qp->context->ops.post_recv(qp, wr, bad_wr); } /** * ibv_create_ah - Create an address handle. */ struct ibv_ah *ibv_create_ah(struct ibv_pd *pd, struct ibv_ah_attr *attr); /** * ibv_init_ah_from_wc - Initializes address handle attributes from a * work completion. * @context: Device context on which the received message arrived. * @port_num: Port on which the received message arrived. * @wc: Work completion associated with the received message. * @grh: References the received global route header. This parameter is * ignored unless the work completion indicates that the GRH is valid. * @ah_attr: Returned attributes that can be used when creating an address * handle for replying to the message. */ int ibv_init_ah_from_wc(struct ibv_context *context, uint8_t port_num, struct ibv_wc *wc, struct ibv_grh *grh, struct ibv_ah_attr *ah_attr); /** * ibv_create_ah_from_wc - Creates an address handle associated with the * sender of the specified work completion. * @pd: The protection domain associated with the address handle. * @wc: Work completion information associated with a received message. * @grh: References the received global route header. This parameter is * ignored unless the work completion indicates that the GRH is valid. * @port_num: The outbound port number to associate with the address. * * The address handle is used to reference a local or global destination * in all UD QP post sends. */ struct ibv_ah *ibv_create_ah_from_wc(struct ibv_pd *pd, struct ibv_wc *wc, struct ibv_grh *grh, uint8_t port_num); /** * ibv_destroy_ah - Destroy an address handle. */ int ibv_destroy_ah(struct ibv_ah *ah); /** * ibv_attach_mcast - Attaches the specified QP to a multicast group. * @qp: QP to attach to the multicast group. The QP must be a UD QP. * @gid: Multicast group GID. * @lid: Multicast group LID in host byte order. * * In order to route multicast packets correctly, subnet * administration must have created the multicast group and configured * the fabric appropriately. The port associated with the specified * QP must also be a member of the multicast group. */ int ibv_attach_mcast(struct ibv_qp *qp, const union ibv_gid *gid, uint16_t lid); /** * ibv_detach_mcast - Detaches the specified QP from a multicast group. * @qp: QP to detach from the multicast group. * @gid: Multicast group GID. * @lid: Multicast group LID in host byte order. */ int ibv_detach_mcast(struct ibv_qp *qp, const union ibv_gid *gid, uint16_t lid); /** * ibv_fork_init - Prepare data structures so that fork() may be used * safely. If this function is not called or returns a non-zero * status, then libibverbs data structures are not fork()-safe and the * effect of an application calling fork() is undefined. */ int ibv_fork_init(void); /** * ibv_is_fork_initialized - Check if fork support * (ibv_fork_init) was enabled. */ enum ibv_fork_status ibv_is_fork_initialized(void); /** * ibv_node_type_str - Return string describing node_type enum value */ const char *ibv_node_type_str(enum ibv_node_type node_type); /** * ibv_port_state_str - Return string describing port_state enum value */ const char *ibv_port_state_str(enum ibv_port_state port_state); /** * ibv_event_type_str - Return string describing event_type enum value */ const char *ibv_event_type_str(enum ibv_event_type event); int ibv_resolve_eth_l2_from_gid(struct ibv_context *context, struct ibv_ah_attr *attr, uint8_t eth_mac[ETHERNET_LL_SIZE], uint16_t *vid); static inline int ibv_is_qpt_supported(uint32_t caps, enum ibv_qp_type qpt) { return !!(caps & (1 << qpt)); } static inline struct ibv_counters *ibv_create_counters(struct ibv_context *context, struct ibv_counters_init_attr *init_attr) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(context, create_counters); if (!vctx) { errno = EOPNOTSUPP; return NULL; } return vctx->create_counters(context, init_attr); } static inline int ibv_destroy_counters(struct ibv_counters *counters) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(counters->context, destroy_counters); if (!vctx) return EOPNOTSUPP; return vctx->destroy_counters(counters); } static inline int ibv_attach_counters_point_flow(struct ibv_counters *counters, struct ibv_counter_attach_attr *attr, struct ibv_flow *flow) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(counters->context, attach_counters_point_flow); if (!vctx) return EOPNOTSUPP; return vctx->attach_counters_point_flow(counters, attr, flow); } static inline int ibv_read_counters(struct ibv_counters *counters, uint64_t *counters_value, uint32_t ncounters, uint32_t flags) { struct verbs_context *vctx; vctx = verbs_get_ctx_op(counters->context, read_counters); if (!vctx) return EOPNOTSUPP; return vctx->read_counters(counters, counters_value, ncounters, flags); } #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) static inline uint16_t ibv_flow_label_to_udp_sport(uint32_t fl) { uint32_t fl_low = fl & 0x03FFF, fl_high = fl & 0xFC000; fl_low ^= fl_high >> 14; return (uint16_t)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); } /** * ibv_set_ece - Set ECE options */ int ibv_set_ece(struct ibv_qp *qp, struct ibv_ece *ece); /** * ibv_query_ece - Get accepted ECE options */ int ibv_query_ece(struct ibv_qp *qp, struct ibv_ece *ece); #ifdef __cplusplus } #endif # undef __attribute_const #endif /* INFINIBAND_VERBS_H */