/* -*- mode: C -*- */ /* IGraph library. Copyright (C) 2009-2012 Gabor Csardi 334 Harvard street, Cambridge, MA 02139 USA This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef IGRAPH_HRG_H #define IGRAPH_HRG_H #include "igraph_decls.h" #include "igraph_vector.h" #include "igraph_vector_ptr.h" #include "igraph_datatype.h" __BEGIN_DECLS /** * \struct igraph_hrg_t * Data structure to store a hierarchical random graph * * A hierarchical random graph (HRG) can be given as a binary tree, * where the internal vertices are labeled with real numbers. * * Note that you don't necessarily have to know this * internal representation for using the HRG functions, just pass the * HRG objects created by one igraph function, to another igraph * function. * * * It has the following members: * \member left Vector that contains the left children of the internal * tree vertices. The first vertex is always the root vertex, so * the first element of the vector is the left child of the root * vertex. Internal vertices are denoted with negative numbers, * starting from -1 and going down, i.e. the root vertex is * -1. Leaf vertices are denoted by non-negative number, starting * from zero and up. * \member right Vector that contains the right children of the * vertices, with the same encoding as the \c left vector. * \member prob The connection probabilities attached to the internal * vertices, the first number belongs to the root vertex * (i.e. internal vertex -1), the second to internal vertex -2, * etc. * \member edges The number of edges in the subtree below the given * internal vertex. * \member vertices The number of vertices in the subtree below the * given internal vertex, including itself. */ typedef struct igraph_hrg_t { igraph_vector_t left, right, prob, edges, vertices; } igraph_hrg_t; IGRAPH_EXPORT int igraph_hrg_init(igraph_hrg_t *hrg, int n); IGRAPH_EXPORT void igraph_hrg_destroy(igraph_hrg_t *hrg); IGRAPH_EXPORT int igraph_hrg_size(const igraph_hrg_t *hrg); IGRAPH_EXPORT int igraph_hrg_resize(igraph_hrg_t *hrg, int newsize); IGRAPH_EXPORT int igraph_hrg_fit(const igraph_t *graph, igraph_hrg_t *hrg, igraph_bool_t start, int steps); IGRAPH_EXPORT int igraph_hrg_sample(const igraph_t *graph, igraph_t *sample, igraph_vector_ptr_t *samples, igraph_integer_t no_samples, igraph_hrg_t *hrg, igraph_bool_t start); IGRAPH_EXPORT int igraph_hrg_game(igraph_t *graph, const igraph_hrg_t *hrg); IGRAPH_EXPORT int igraph_hrg_dendrogram(igraph_t *graph, const igraph_hrg_t *hrg); IGRAPH_EXPORT int igraph_hrg_consensus(const igraph_t *graph, igraph_vector_t *parents, igraph_vector_t *weights, igraph_hrg_t *hrg, igraph_bool_t start, int num_samples); IGRAPH_EXPORT int igraph_hrg_predict(const igraph_t *graph, igraph_vector_t *edges, igraph_vector_t *prob, igraph_hrg_t *hrg, igraph_bool_t start, int num_samples, int num_bins); IGRAPH_EXPORT int igraph_hrg_create(igraph_hrg_t *hrg, const igraph_t *graph, const igraph_vector_t *prob); __END_DECLS #endif /* IGRAPH_HRG_H */