== Identity matrix == == Diagonal matrix == == A tree, plus a ring == Regular: Eigenvalues: ( 3.79369 ) Eigenvectors: [ 0.272513 0.387127 0.421856 0.429479 0.344793 0.266584 0.24469 0.239837 0.235697 0.224848 ] Shift and invert, LU: Eigenvalues: ( 3.79369 ) Eigenvectors: [ 0.272513 0.387127 0.421856 0.429479 0.344793 0.266584 0.24469 0.239837 0.235697 0.224848 ] Shift and invert, QR: Eigenvalues: ( 3.79369 ) Eigenvectors: [ 0.272513 0.387127 0.421856 0.429479 0.344793 0.266584 0.24469 0.239837 0.235697 0.224848 ] == A directed tree and a directed, mutual ring == Regular: Eigenvalues: [ 2.61264 0 ] Eigenvectors: [ 0.467245 0.571573 0.427081 0.335532 0.263456 0.130696 0.0780048 0.0731022 0.112985 0.222086 ] == A small test graph == Regular: Eigenvalues: [ 1.35971 0 ] Eigenvectors: [ 0.352334 0.479071 0.190574 0.525509 0.140158 0.10308 0.455414 0.0680917 0.125888 0.0925848 0.259125 ] == Testing the special case solver for 1x1 matrices == rnsolve: - eigenvalues: [ 2 0 ] - eigenvectors: [ 1 ] rssolve: - eigenvalues: ( 2 ) - eigenvectors: [ 1 ] rnsolve: - eigenvalues: [ 0 0 ] - eigenvectors: [ 1 ] rssolve: - eigenvalues: ( 0 ) - eigenvectors: [ 1 ] rnsolve: - eigenvalues: [ -3 0 ] - eigenvectors: [ 1 ] rssolve: - eigenvalues: ( -3 ) - eigenvectors: [ 1 ] == Testing the special case solver for 2x2 matrices == rnsolve: - eigenvalues: [ 5 0 0 0 ] - eigenvectors: [ 1 -4 2 2 ] rssolve: - eigenvalues: ( 5 0 ) - eigenvectors: [ 1 -4 2 2 ] rnsolve: - eigenvalues: [ 5.37228 0 -0.372281 0 ] - eigenvectors: [ 1.37228 -4.37228 3 3 ] rnsolve: - eigenvalues: [ 2.5 6.91014 2.5 -6.91014 ] - eigenvectors: [ -1.5 6.91014 10 0 ] rnsolve: - eigenvalues: [ 0 0 0 0 ] - eigenvectors: [ 1 0 0 1 ] rssolve: - eigenvalues: ( 0 0 ) - eigenvectors: [ 1 0 0 1 ]