/* cpp.c (solve critical path problem) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2010-2016 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "glpk.h" /*********************************************************************** * NAME * * glp_cpp - solve critical path problem * * SYNOPSIS * * double glp_cpp(glp_graph *G, int v_t, int v_es, int v_ls); * * DESCRIPTION * * The routine glp_cpp solves the critical path problem represented in * the form of the project network. * * The parameter G is a pointer to the graph object, which specifies * the project network. This graph must be acyclic. Multiple arcs are * allowed being considered as single arcs. * * The parameter v_t specifies an offset of the field of type double * in the vertex data block, which contains time t[i] >= 0 needed to * perform corresponding job j. If v_t < 0, it is assumed that t[i] = 1 * for all jobs. * * The parameter v_es specifies an offset of the field of type double * in the vertex data block, to which the routine stores earliest start * time for corresponding job. If v_es < 0, this time is not stored. * * The parameter v_ls specifies an offset of the field of type double * in the vertex data block, to which the routine stores latest start * time for corresponding job. If v_ls < 0, this time is not stored. * * RETURNS * * The routine glp_cpp returns the minimal project duration, that is, * minimal time needed to perform all jobs in the project. */ static void sorting(glp_graph *G, int list[]); double glp_cpp(glp_graph *G, int v_t, int v_es, int v_ls) { glp_vertex *v; glp_arc *a; int i, j, k, nv, *list; double temp, total, *t, *es, *ls; if (v_t >= 0 && v_t > G->v_size - (int)sizeof(double)) xerror("glp_cpp: v_t = %d; invalid offset\n", v_t); if (v_es >= 0 && v_es > G->v_size - (int)sizeof(double)) xerror("glp_cpp: v_es = %d; invalid offset\n", v_es); if (v_ls >= 0 && v_ls > G->v_size - (int)sizeof(double)) xerror("glp_cpp: v_ls = %d; invalid offset\n", v_ls); nv = G->nv; if (nv == 0) { total = 0.0; goto done; } /* allocate working arrays */ t = xcalloc(1+nv, sizeof(double)); es = xcalloc(1+nv, sizeof(double)); ls = xcalloc(1+nv, sizeof(double)); list = xcalloc(1+nv, sizeof(int)); /* retrieve job times */ for (i = 1; i <= nv; i++) { v = G->v[i]; if (v_t >= 0) { memcpy(&t[i], (char *)v->data + v_t, sizeof(double)); if (t[i] < 0.0) xerror("glp_cpp: t[%d] = %g; invalid time\n", i, t[i]); } else t[i] = 1.0; } /* perform topological sorting to determine the list of nodes (jobs) such that if list[k] = i and list[kk] = j and there exists arc (i->j), then k < kk */ sorting(G, list); /* FORWARD PASS */ /* determine earliest start times */ for (k = 1; k <= nv; k++) { j = list[k]; es[j] = 0.0; for (a = G->v[j]->in; a != NULL; a = a->h_next) { i = a->tail->i; /* there exists arc (i->j) in the project network */ temp = es[i] + t[i]; if (es[j] < temp) es[j] = temp; } } /* determine the minimal project duration */ total = 0.0; for (i = 1; i <= nv; i++) { temp = es[i] + t[i]; if (total < temp) total = temp; } /* BACKWARD PASS */ /* determine latest start times */ for (k = nv; k >= 1; k--) { i = list[k]; ls[i] = total - t[i]; for (a = G->v[i]->out; a != NULL; a = a->t_next) { j = a->head->i; /* there exists arc (i->j) in the project network */ temp = ls[j] - t[i]; if (ls[i] > temp) ls[i] = temp; } /* avoid possible round-off errors */ if (ls[i] < es[i]) ls[i] = es[i]; } /* store results, if necessary */ if (v_es >= 0) { for (i = 1; i <= nv; i++) { v = G->v[i]; memcpy((char *)v->data + v_es, &es[i], sizeof(double)); } } if (v_ls >= 0) { for (i = 1; i <= nv; i++) { v = G->v[i]; memcpy((char *)v->data + v_ls, &ls[i], sizeof(double)); } } /* free working arrays */ xfree(t); xfree(es); xfree(ls); xfree(list); done: return total; } static void sorting(glp_graph *G, int list[]) { /* perform topological sorting to determine the list of nodes (jobs) such that if list[k] = i and list[kk] = j and there exists arc (i->j), then k < kk */ int i, k, nv, v_size, *num; void **save; nv = G->nv; v_size = G->v_size; save = xcalloc(1+nv, sizeof(void *)); num = xcalloc(1+nv, sizeof(int)); G->v_size = sizeof(int); for (i = 1; i <= nv; i++) { save[i] = G->v[i]->data; G->v[i]->data = &num[i]; list[i] = 0; } if (glp_top_sort(G, 0) != 0) xerror("glp_cpp: project network is not acyclic\n"); G->v_size = v_size; for (i = 1; i <= nv; i++) { G->v[i]->data = save[i]; k = num[i]; xassert(1 <= k && k <= nv); xassert(list[k] == 0); list[k] = i; } xfree(save); xfree(num); return; } /* eof */