/* cpxbas.c (construct Bixby's initial LP basis) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2008-2018 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "prob.h" struct var { /* structural variable */ int j; /* ordinal number */ double q; /* penalty value */ }; static int CDECL fcmp(const void *ptr1, const void *ptr2) { /* this routine is passed to the qsort() function */ struct var *col1 = (void *)ptr1, *col2 = (void *)ptr2; if (col1->q < col2->q) return -1; if (col1->q > col2->q) return +1; return 0; } static int get_column(glp_prob *lp, int j, int ind[], double val[]) { /* Bixby's algorithm assumes that the constraint matrix is scaled such that the maximum absolute value in every non-zero row and column is 1 */ int k, len; double big; len = glp_get_mat_col(lp, j, ind, val); big = 0.0; for (k = 1; k <= len; k++) if (big < fabs(val[k])) big = fabs(val[k]); if (big == 0.0) big = 1.0; for (k = 1; k <= len; k++) val[k] /= big; return len; } static void cpx_basis(glp_prob *lp) { /* main routine */ struct var *C, *C2, *C3, *C4; int m, n, i, j, jk, k, l, ll, t, n2, n3, n4, type, len, *I, *r, *ind; double alpha, gamma, cmax, temp, *v, *val; xprintf("Constructing initial basis...\n"); /* determine the number of rows and columns */ m = glp_get_num_rows(lp); n = glp_get_num_cols(lp); /* allocate working arrays */ C = xcalloc(1+n, sizeof(struct var)); I = xcalloc(1+m, sizeof(int)); r = xcalloc(1+m, sizeof(int)); v = xcalloc(1+m, sizeof(double)); ind = xcalloc(1+m, sizeof(int)); val = xcalloc(1+m, sizeof(double)); /* make all auxiliary variables non-basic */ for (i = 1; i <= m; i++) { if (glp_get_row_type(lp, i) != GLP_DB) glp_set_row_stat(lp, i, GLP_NS); else if (fabs(glp_get_row_lb(lp, i)) <= fabs(glp_get_row_ub(lp, i))) glp_set_row_stat(lp, i, GLP_NL); else glp_set_row_stat(lp, i, GLP_NU); } /* make all structural variables non-basic */ for (j = 1; j <= n; j++) { if (glp_get_col_type(lp, j) != GLP_DB) glp_set_col_stat(lp, j, GLP_NS); else if (fabs(glp_get_col_lb(lp, j)) <= fabs(glp_get_col_ub(lp, j))) glp_set_col_stat(lp, j, GLP_NL); else glp_set_col_stat(lp, j, GLP_NU); } /* C2 is a set of free structural variables */ n2 = 0, C2 = C + 0; for (j = 1; j <= n; j++) { type = glp_get_col_type(lp, j); if (type == GLP_FR) { n2++; C2[n2].j = j; C2[n2].q = 0.0; } } /* C3 is a set of structural variables having excatly one (lower or upper) bound */ n3 = 0, C3 = C2 + n2; for (j = 1; j <= n; j++) { type = glp_get_col_type(lp, j); if (type == GLP_LO) { n3++; C3[n3].j = j; C3[n3].q = + glp_get_col_lb(lp, j); } else if (type == GLP_UP) { n3++; C3[n3].j = j; C3[n3].q = - glp_get_col_ub(lp, j); } } /* C4 is a set of structural variables having both (lower and upper) bounds */ n4 = 0, C4 = C3 + n3; for (j = 1; j <= n; j++) { type = glp_get_col_type(lp, j); if (type == GLP_DB) { n4++; C4[n4].j = j; C4[n4].q = glp_get_col_lb(lp, j) - glp_get_col_ub(lp, j); } } /* compute gamma = max{|c[j]|: 1 <= j <= n} */ gamma = 0.0; for (j = 1; j <= n; j++) { temp = fabs(glp_get_obj_coef(lp, j)); if (gamma < temp) gamma = temp; } /* compute cmax */ cmax = (gamma == 0.0 ? 1.0 : 1000.0 * gamma); /* compute final penalty for all structural variables within sets C2, C3, and C4 */ switch (glp_get_obj_dir(lp)) { case GLP_MIN: temp = +1.0; break; case GLP_MAX: temp = -1.0; break; default: xassert(lp != lp); } for (k = 1; k <= n2+n3+n4; k++) { j = C[k].j; C[k].q += (temp * glp_get_obj_coef(lp, j)) / cmax; } /* sort structural variables within C2, C3, and C4 in ascending order of penalty value */ qsort(C2+1, n2, sizeof(struct var), fcmp); for (k = 1; k < n2; k++) xassert(C2[k].q <= C2[k+1].q); qsort(C3+1, n3, sizeof(struct var), fcmp); for (k = 1; k < n3; k++) xassert(C3[k].q <= C3[k+1].q); qsort(C4+1, n4, sizeof(struct var), fcmp); for (k = 1; k < n4; k++) xassert(C4[k].q <= C4[k+1].q); /*** STEP 1 ***/ for (i = 1; i <= m; i++) { type = glp_get_row_type(lp, i); if (type != GLP_FX) { /* row i is either free or inequality constraint */ glp_set_row_stat(lp, i, GLP_BS); I[i] = 1; r[i] = 1; } else { /* row i is equality constraint */ I[i] = 0; r[i] = 0; } v[i] = +DBL_MAX; } /*** STEP 2 ***/ for (k = 1; k <= n2+n3+n4; k++) { jk = C[k].j; len = get_column(lp, jk, ind, val); /* let alpha = max{|A[l,jk]|: r[l] = 0} and let l' be such that alpha = |A[l',jk]| */ alpha = 0.0, ll = 0; for (t = 1; t <= len; t++) { l = ind[t]; if (r[l] == 0 && alpha < fabs(val[t])) alpha = fabs(val[t]), ll = l; } if (alpha >= 0.99) { /* B := B union {jk} */ glp_set_col_stat(lp, jk, GLP_BS); I[ll] = 1; v[ll] = alpha; /* r[l] := r[l] + 1 for all l such that |A[l,jk]| != 0 */ for (t = 1; t <= len; t++) { l = ind[t]; if (val[t] != 0.0) r[l]++; } /* continue to the next k */ continue; } /* if |A[l,jk]| > 0.01 * v[l] for some l, continue to the next k */ for (t = 1; t <= len; t++) { l = ind[t]; if (fabs(val[t]) > 0.01 * v[l]) break; } if (t <= len) continue; /* otherwise, let alpha = max{|A[l,jk]|: I[l] = 0} and let l' be such that alpha = |A[l',jk]| */ alpha = 0.0, ll = 0; for (t = 1; t <= len; t++) { l = ind[t]; if (I[l] == 0 && alpha < fabs(val[t])) alpha = fabs(val[t]), ll = l; } /* if alpha = 0, continue to the next k */ if (alpha == 0.0) continue; /* B := B union {jk} */ glp_set_col_stat(lp, jk, GLP_BS); I[ll] = 1; v[ll] = alpha; /* r[l] := r[l] + 1 for all l such that |A[l,jk]| != 0 */ for (t = 1; t <= len; t++) { l = ind[t]; if (val[t] != 0.0) r[l]++; } } /*** STEP 3 ***/ /* add an artificial variable (auxiliary variable for equality constraint) to cover each remaining uncovered row */ for (i = 1; i <= m; i++) if (I[i] == 0) glp_set_row_stat(lp, i, GLP_BS); /* free working arrays */ xfree(C); xfree(I); xfree(r); xfree(v); xfree(ind); xfree(val); return; } /*********************************************************************** * NAME * * glp_cpx_basis - construct Bixby's initial LP basis * * SYNOPSIS * * void glp_cpx_basis(glp_prob *lp); * * DESCRIPTION * * The routine glp_cpx_basis constructs an advanced initial basis for * the specified problem object. * * The routine is based on Bixby's algorithm described in the paper: * * Robert E. Bixby. Implementing the Simplex Method: The Initial Basis. * ORSA Journal on Computing, Vol. 4, No. 3, 1992, pp. 267-84. */ void glp_cpx_basis(glp_prob *lp) { if (lp->m == 0 || lp->n == 0) glp_std_basis(lp); else cpx_basis(lp); return; } /* eof */