/* maxflp.c (convert maximum flow problem to LP) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2009-2016 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "glpk.h" /*********************************************************************** * NAME * * glp_maxflow_lp - convert maximum flow problem to LP * * SYNOPSIS * * void glp_maxflow_lp(glp_prob *lp, glp_graph *G, int names, int s, * int t, int a_cap); * * DESCRIPTION * * The routine glp_maxflow_lp builds an LP problem, which corresponds * to the maximum flow problem on the specified network G. */ void glp_maxflow_lp(glp_prob *lp, glp_graph *G, int names, int s, int t, int a_cap) { glp_vertex *v; glp_arc *a; int i, j, type, ind[1+2]; double cap, val[1+2]; if (!(names == GLP_ON || names == GLP_OFF)) xerror("glp_maxflow_lp: names = %d; invalid parameter\n", names); if (!(1 <= s && s <= G->nv)) xerror("glp_maxflow_lp: s = %d; source node number out of rang" "e\n", s); if (!(1 <= t && t <= G->nv)) xerror("glp_maxflow_lp: t = %d: sink node number out of range " "\n", t); if (s == t) xerror("glp_maxflow_lp: s = t = %d; source and sink nodes must" " be distinct\n", s); if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double)) xerror("glp_maxflow_lp: a_cap = %d; invalid offset\n", a_cap); glp_erase_prob(lp); if (names) glp_set_prob_name(lp, G->name); glp_set_obj_dir(lp, GLP_MAX); glp_add_rows(lp, G->nv); for (i = 1; i <= G->nv; i++) { v = G->v[i]; if (names) glp_set_row_name(lp, i, v->name); if (i == s) type = GLP_LO; else if (i == t) type = GLP_UP; else type = GLP_FX; glp_set_row_bnds(lp, i, type, 0.0, 0.0); } if (G->na > 0) glp_add_cols(lp, G->na); for (i = 1, j = 0; i <= G->nv; i++) { v = G->v[i]; for (a = v->out; a != NULL; a = a->t_next) { j++; if (names) { char name[50+1]; sprintf(name, "x[%d,%d]", a->tail->i, a->head->i); xassert(strlen(name) < sizeof(name)); glp_set_col_name(lp, j, name); } if (a->tail->i != a->head->i) { ind[1] = a->tail->i, val[1] = +1.0; ind[2] = a->head->i, val[2] = -1.0; glp_set_mat_col(lp, j, 2, ind, val); } if (a_cap >= 0) memcpy(&cap, (char *)a->data + a_cap, sizeof(double)); else cap = 1.0; if (cap == DBL_MAX) type = GLP_LO; else if (cap != 0.0) type = GLP_DB; else type = GLP_FX; glp_set_col_bnds(lp, j, type, 0.0, cap); if (a->tail->i == s) glp_set_obj_coef(lp, j, +1.0); else if (a->head->i == s) glp_set_obj_coef(lp, j, -1.0); } } xassert(j == G->na); return; } /* eof */