/* pript.c (write interior-point solution in printable format) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2009-2016 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "prob.h" #define xfprintf glp_format int glp_print_ipt(glp_prob *P, const char *fname) { /* write interior-point solution in printable format */ glp_file *fp; GLPROW *row; GLPCOL *col; int i, j, t, ae_ind, re_ind, ret; double ae_max, re_max; xprintf("Writing interior-point solution to '%s'...\n", fname); fp = glp_open(fname, "w"); if (fp == NULL) { xprintf("Unable to create '%s' - %s\n", fname, get_err_msg()); ret = 1; goto done; } xfprintf(fp, "%-12s%s\n", "Problem:", P->name == NULL ? "" : P->name); xfprintf(fp, "%-12s%d\n", "Rows:", P->m); xfprintf(fp, "%-12s%d\n", "Columns:", P->n); xfprintf(fp, "%-12s%d\n", "Non-zeros:", P->nnz); t = glp_ipt_status(P); xfprintf(fp, "%-12s%s\n", "Status:", t == GLP_OPT ? "OPTIMAL" : t == GLP_UNDEF ? "UNDEFINED" : t == GLP_INFEAS ? "INFEASIBLE (INTERMEDIATE)" : t == GLP_NOFEAS ? "INFEASIBLE (FINAL)" : "???"); xfprintf(fp, "%-12s%s%s%.10g (%s)\n", "Objective:", P->obj == NULL ? "" : P->obj, P->obj == NULL ? "" : " = ", P->ipt_obj, P->dir == GLP_MIN ? "MINimum" : P->dir == GLP_MAX ? "MAXimum" : "???"); xfprintf(fp, "\n"); xfprintf(fp, " No. Row name Activity Lower bound " " Upper bound Marginal\n"); xfprintf(fp, "------ ------------ ------------- ------------- " "------------- -------------\n"); for (i = 1; i <= P->m; i++) { row = P->row[i]; xfprintf(fp, "%6d ", i); if (row->name == NULL || strlen(row->name) <= 12) xfprintf(fp, "%-12s ", row->name == NULL ? "" : row->name); else xfprintf(fp, "%s\n%20s", row->name, ""); xfprintf(fp, "%3s", ""); xfprintf(fp, "%13.6g ", fabs(row->pval) <= 1e-9 ? 0.0 : row->pval); if (row->type == GLP_LO || row->type == GLP_DB || row->type == GLP_FX) xfprintf(fp, "%13.6g ", row->lb); else xfprintf(fp, "%13s ", ""); if (row->type == GLP_UP || row->type == GLP_DB) xfprintf(fp, "%13.6g ", row->ub); else xfprintf(fp, "%13s ", row->type == GLP_FX ? "=" : ""); if (fabs(row->dval) <= 1e-9) xfprintf(fp, "%13s", "< eps"); else xfprintf(fp, "%13.6g ", row->dval); xfprintf(fp, "\n"); } xfprintf(fp, "\n"); xfprintf(fp, " No. Column name Activity Lower bound " " Upper bound Marginal\n"); xfprintf(fp, "------ ------------ ------------- ------------- " "------------- -------------\n"); for (j = 1; j <= P->n; j++) { col = P->col[j]; xfprintf(fp, "%6d ", j); if (col->name == NULL || strlen(col->name) <= 12) xfprintf(fp, "%-12s ", col->name == NULL ? "" : col->name); else xfprintf(fp, "%s\n%20s", col->name, ""); xfprintf(fp, "%3s", ""); xfprintf(fp, "%13.6g ", fabs(col->pval) <= 1e-9 ? 0.0 : col->pval); if (col->type == GLP_LO || col->type == GLP_DB || col->type == GLP_FX) xfprintf(fp, "%13.6g ", col->lb); else xfprintf(fp, "%13s ", ""); if (col->type == GLP_UP || col->type == GLP_DB) xfprintf(fp, "%13.6g ", col->ub); else xfprintf(fp, "%13s ", col->type == GLP_FX ? "=" : ""); if (fabs(col->dval) <= 1e-9) xfprintf(fp, "%13s", "< eps"); else xfprintf(fp, "%13.6g ", col->dval); xfprintf(fp, "\n"); } xfprintf(fp, "\n"); xfprintf(fp, "Karush-Kuhn-Tucker optimality conditions:\n"); xfprintf(fp, "\n"); glp_check_kkt(P, GLP_IPT, GLP_KKT_PE, &ae_max, &ae_ind, &re_max, &re_ind); xfprintf(fp, "KKT.PE: max.abs.err = %.2e on row %d\n", ae_max, ae_ind); xfprintf(fp, " max.rel.err = %.2e on row %d\n", re_max, re_ind); xfprintf(fp, "%8s%s\n", "", re_max <= 1e-9 ? "High quality" : re_max <= 1e-6 ? "Medium quality" : re_max <= 1e-3 ? "Low quality" : "PRIMAL SOLUTION IS WRONG"); xfprintf(fp, "\n"); glp_check_kkt(P, GLP_IPT, GLP_KKT_PB, &ae_max, &ae_ind, &re_max, &re_ind); xfprintf(fp, "KKT.PB: max.abs.err = %.2e on %s %d\n", ae_max, ae_ind <= P->m ? "row" : "column", ae_ind <= P->m ? ae_ind : ae_ind - P->m); xfprintf(fp, " max.rel.err = %.2e on %s %d\n", re_max, re_ind <= P->m ? "row" : "column", re_ind <= P->m ? re_ind : re_ind - P->m); xfprintf(fp, "%8s%s\n", "", re_max <= 1e-9 ? "High quality" : re_max <= 1e-6 ? "Medium quality" : re_max <= 1e-3 ? "Low quality" : "PRIMAL SOLUTION IS INFEASIBL" "E"); xfprintf(fp, "\n"); glp_check_kkt(P, GLP_IPT, GLP_KKT_DE, &ae_max, &ae_ind, &re_max, &re_ind); xfprintf(fp, "KKT.DE: max.abs.err = %.2e on column %d\n", ae_max, ae_ind == 0 ? 0 : ae_ind - P->m); xfprintf(fp, " max.rel.err = %.2e on column %d\n", re_max, re_ind == 0 ? 0 : re_ind - P->m); xfprintf(fp, "%8s%s\n", "", re_max <= 1e-9 ? "High quality" : re_max <= 1e-6 ? "Medium quality" : re_max <= 1e-3 ? "Low quality" : "DUAL SOLUTION IS WRONG"); xfprintf(fp, "\n"); glp_check_kkt(P, GLP_IPT, GLP_KKT_DB, &ae_max, &ae_ind, &re_max, &re_ind); xfprintf(fp, "KKT.DB: max.abs.err = %.2e on %s %d\n", ae_max, ae_ind <= P->m ? "row" : "column", ae_ind <= P->m ? ae_ind : ae_ind - P->m); xfprintf(fp, " max.rel.err = %.2e on %s %d\n", re_max, re_ind <= P->m ? "row" : "column", re_ind <= P->m ? re_ind : re_ind - P->m); xfprintf(fp, "%8s%s\n", "", re_max <= 1e-9 ? "High quality" : re_max <= 1e-6 ? "Medium quality" : re_max <= 1e-3 ? "Low quality" : "DUAL SOLUTION IS INFEASIBLE") ; xfprintf(fp, "\n"); xfprintf(fp, "End of output\n"); #if 0 /* FIXME */ xfflush(fp); #endif if (glp_ioerr(fp)) { xprintf("Write error on '%s' - %s\n", fname, get_err_msg()); ret = 1; goto done; } ret = 0; done: if (fp != NULL) glp_close(fp); return ret; } /* eof */