/* wcliqex.c (find maximum weight clique with exact algorithm) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2009-2016 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "glpk.h" #include "wclique.h" static void set_edge(int nv, unsigned char a[], int i, int j) { int k; xassert(1 <= j && j < i && i <= nv); k = ((i - 1) * (i - 2)) / 2 + (j - 1); a[k / CHAR_BIT] |= (unsigned char)(1 << ((CHAR_BIT - 1) - k % CHAR_BIT)); return; } int glp_wclique_exact(glp_graph *G, int v_wgt, double *sol, int v_set) { /* find maximum weight clique with exact algorithm */ glp_arc *e; int i, j, k, len, x, *w, *ind, ret = 0; unsigned char *a; double s, t; if (v_wgt >= 0 && v_wgt > G->v_size - (int)sizeof(double)) xerror("glp_wclique_exact: v_wgt = %d; invalid parameter\n", v_wgt); if (v_set >= 0 && v_set > G->v_size - (int)sizeof(int)) xerror("glp_wclique_exact: v_set = %d; invalid parameter\n", v_set); if (G->nv == 0) { /* empty graph has only empty clique */ if (sol != NULL) *sol = 0.0; return 0; } /* allocate working arrays */ w = xcalloc(1+G->nv, sizeof(int)); ind = xcalloc(1+G->nv, sizeof(int)); len = G->nv; /* # vertices */ len = len * (len - 1) / 2; /* # entries in lower triangle */ len = (len + (CHAR_BIT - 1)) / CHAR_BIT; /* # bytes needed */ a = xcalloc(len, sizeof(char)); memset(a, 0, len * sizeof(char)); /* determine vertex weights */ s = 0.0; for (i = 1; i <= G->nv; i++) { if (v_wgt >= 0) { memcpy(&t, (char *)G->v[i]->data + v_wgt, sizeof(double)); if (!(0.0 <= t && t <= (double)INT_MAX && t == floor(t))) { ret = GLP_EDATA; goto done; } w[i] = (int)t; } else w[i] = 1; s += (double)w[i]; } if (s > (double)INT_MAX) { ret = GLP_EDATA; goto done; } /* build the adjacency matrix */ for (i = 1; i <= G->nv; i++) { for (e = G->v[i]->in; e != NULL; e = e->h_next) { j = e->tail->i; /* there exists edge (j,i) in the graph */ if (i > j) set_edge(G->nv, a, i, j); } for (e = G->v[i]->out; e != NULL; e = e->t_next) { j = e->head->i; /* there exists edge (i,j) in the graph */ if (i > j) set_edge(G->nv, a, i, j); } } /* find maximum weight clique in the graph */ len = wclique(G->nv, w, a, ind); /* compute the clique weight */ s = 0.0; for (k = 1; k <= len; k++) { i = ind[k]; xassert(1 <= i && i <= G->nv); s += (double)w[i]; } if (sol != NULL) *sol = s; /* mark vertices included in the clique */ if (v_set >= 0) { x = 0; for (i = 1; i <= G->nv; i++) memcpy((char *)G->v[i]->data + v_set, &x, sizeof(int)); x = 1; for (k = 1; k <= len; k++) { i = ind[k]; memcpy((char *)G->v[i]->data + v_set, &x, sizeof(int)); } } done: /* free working arrays */ xfree(w); xfree(ind); xfree(a); return ret; } /* eof */