/* fhv.c (sparse updatable FHV-factorization) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2012-2013 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "fhv.h" /*********************************************************************** * fhv_ft_update - update FHV-factorization (Forrest-Tomlin) * * This routine updates FHV-factorization of the original matrix A * after replacing its j-th column by a new one. The routine is based * on the method proposed by Forrest and Tomlin [1]. * * The parameter q specifies the number of column of A, which has been * replaced, 1 <= q <= n, where n is the order of A. * * Row indices and numerical values of non-zero elements of the new * j-th column of A should be placed in locations aq_ind[1], ..., * aq_ind[aq_len] and aq_val[1], ..., aq_val[aq_len], respectively, * where aq_len is the number of non-zeros. Neither zero nor duplicate * elements are allowed. * * The working arrays ind, val, and work should have at least 1+n * elements (0-th elements are not used). * * RETURNS * * 0 The factorization has been successfully updated. * * 1 New matrix U = P'* V * Q' is upper triangular with zero diagonal * element u[s,s]. (Elimination was not performed.) * * 2 New matrix U = P'* V * Q' is upper triangular, and its diagonal * element u[s,s] or u[t,t] is too small in magnitude. (Elimination * was not performed.) * * 3 The same as 2, but after performing elimination. * * 4 The factorization has not been updated, because maximal number of * updates has been reached. * * 5 Accuracy test failed for the updated factorization. * * BACKGROUND * * The routine is based on the updating method proposed by Forrest and * Tomlin [1]. * * Let q-th column of the original matrix A have been replaced by new * column A[q]. Then, to keep the equality A = F * H * V, q-th column * of matrix V should be replaced by column V[q] = inv(F * H) * A[q]. * From the standpoint of matrix U = P'* V * Q' such replacement is * equivalent to replacement of s-th column of matrix U, where s is * determined from q by permutation matrix Q. Thus, matrix U loses its * upper triangular form and becomes the following: * * 1 s t n * 1 x x * x x x x x x * . x * x x x x x x * s . . * x x x x x x * . . * x x x x x x * . . * . x x x x x * . . * . . x x x x * t . . * . . . x x x * . . . . . . . x x * n . . . . . . . . x * * where t is largest row index of a non-zero element in s-th column. * * The routine makes matrix U upper triangular as follows. First, it * moves rows and columns s+1, ..., t by one position to the left and * upwards, resp., and moves s-th row and s-th column to position t. * Due to such symmetric permutations matrix U becomes the following * (note that all diagonal elements remain on the diagonal, and element * u[s,s] becomes u[t,t]): * * 1 s t n * 1 x x x x x x * x x * . x x x x x * x x * s . . x x x x * x x * . . . x x x * x x * . . . . x x * x x * . . . . . x * x x * t . . x x x x * x x * . . . . . . . x x * n . . . . . . . . x * * Then the routine performs gaussian elimination to eliminate * subdiagonal elements u[t,s], ..., u[t,t-1] using diagonal elements * u[s,s], ..., u[t-1,t-1] as pivots. During the elimination process * the routine permutes neither rows nor columns, so only t-th row is * changed. Should note that actually all operations are performed on * matrix V = P * U * Q, since matrix U is not stored. * * To keep the equality A = F * H * V, the routine appends new row-like * factor H[k] to matrix H, and every time it applies elementary * gaussian transformation to eliminate u[t,j'] = v[p,j] using pivot * u[j',j'] = v[i,j], it also adds new element f[p,j] = v[p,j] / v[i,j] * (gaussian multiplier) to factor H[k], which initially is a unity * matrix. At the end of elimination process the row-like factor H[k] * may look as follows: * * 1 n 1 s t n * 1 1 . . . . . . . . 1 1 . . . . . . . . * . 1 . . . . . . . . 1 . . . . . . . * . . 1 . . . . . . s . . 1 . . . . . . * p . x x 1 . x . x . . . . 1 . . . . . * . . . . 1 . . . . . . . . 1 . . . . * . . . . . 1 . . . . . . . . 1 . . . * . . . . . . 1 . . t . . x x x x 1 . . * . . . . . . . 1 . . . . . . . . 1 . * n . . . . . . . . 1 n . . . . . . . . 1 * * H[k] inv(P) * H[k] * P * * If, however, s = t, no elimination is needed, in which case no new * row-like factor is created. * * REFERENCES * * 1. J.J.H.Forrest and J.A.Tomlin, "Updated triangular factors of the * basis to maintain sparsity in the product form simplex method," * Math. Prog. 2 (1972), pp. 263-78. */ int fhv_ft_update(FHV *fhv, int q, int aq_len, const int aq_ind[], const double aq_val[], int ind[/*1+n*/], double val[/*1+n*/], double work[/*1+n*/]) { LUF *luf = fhv->luf; int n = luf->n; SVA *sva = luf->sva; int *sv_ind = sva->ind; double *sv_val = sva->val; int vr_ref = luf->vr_ref; int *vr_ptr = &sva->ptr[vr_ref-1]; int *vr_len = &sva->len[vr_ref-1]; int *vr_cap = &sva->cap[vr_ref-1]; double *vr_piv = luf->vr_piv; int vc_ref = luf->vc_ref; int *vc_ptr = &sva->ptr[vc_ref-1]; int *vc_len = &sva->len[vc_ref-1]; int *vc_cap = &sva->cap[vc_ref-1]; int *pp_ind = luf->pp_ind; int *pp_inv = luf->pp_inv; int *qq_ind = luf->qq_ind; int *qq_inv = luf->qq_inv; int *hh_ind = fhv->hh_ind; int hh_ref = fhv->hh_ref; int *hh_ptr = &sva->ptr[hh_ref-1]; int *hh_len = &sva->len[hh_ref-1]; #if 1 /* FIXME */ const double eps_tol = DBL_EPSILON; const double vpq_tol = 1e-5; const double err_tol = 1e-10; #endif int end, i, i_end, i_ptr, j, j_end, j_ptr, k, len, nnz, p, p_end, p_ptr, ptr, q_end, q_ptr, s, t; double f, vpq, temp; /*--------------------------------------------------------------*/ /* replace current q-th column of matrix V by new one */ /*--------------------------------------------------------------*/ xassert(1 <= q && q <= n); /* convert new q-th column of matrix A to dense format */ for (i = 1; i <= n; i++) val[i] = 0.0; xassert(0 <= aq_len && aq_len <= n); for (k = 1; k <= aq_len; k++) { i = aq_ind[k]; xassert(1 <= i && i <= n); xassert(val[i] == 0.0); xassert(aq_val[k] != 0.0); val[i] = aq_val[k]; } /* compute new q-th column of matrix V: * new V[q] = inv(F * H) * (new A[q]) */ luf->pp_ind = fhv->p0_ind; luf->pp_inv = fhv->p0_inv; luf_f_solve(luf, val); luf->pp_ind = pp_ind; luf->pp_inv = pp_inv; fhv_h_solve(fhv, val); /* q-th column of V = s-th column of U */ s = qq_inv[q]; /* determine row number of element v[p,q] that corresponds to * diagonal element u[s,s] */ p = pp_inv[s]; /* convert new q-th column of V to sparse format; * element v[p,q] = u[s,s] is not included in the element list * and stored separately */ vpq = 0.0; len = 0; for (i = 1; i <= n; i++) { temp = val[i]; #if 1 /* FIXME */ if (-eps_tol < temp && temp < +eps_tol) #endif /* nop */; else if (i == p) vpq = temp; else { ind[++len] = i; val[len] = temp; } } /* clear q-th column of matrix V */ for (q_end = (q_ptr = vc_ptr[q]) + vc_len[q]; q_ptr < q_end; q_ptr++) { /* get row index of v[i,q] */ i = sv_ind[q_ptr]; /* find and remove v[i,q] from i-th row */ for (i_end = (i_ptr = vr_ptr[i]) + vr_len[i]; sv_ind[i_ptr] != q; i_ptr++) /* nop */; xassert(i_ptr < i_end); sv_ind[i_ptr] = sv_ind[i_end-1]; sv_val[i_ptr] = sv_val[i_end-1]; vr_len[i]--; } /* now q-th column of matrix V is empty */ vc_len[q] = 0; /* put new q-th column of V (except element v[p,q] = u[s,s]) in * column-wise format */ if (len > 0) { if (vc_cap[q] < len) { if (sva->r_ptr - sva->m_ptr < len) { sva_more_space(sva, len); sv_ind = sva->ind; sv_val = sva->val; } sva_enlarge_cap(sva, vc_ref-1+q, len, 0); } ptr = vc_ptr[q]; memcpy(&sv_ind[ptr], &ind[1], len * sizeof(int)); memcpy(&sv_val[ptr], &val[1], len * sizeof(double)); vc_len[q] = len; } /* put new q-th column of V (except element v[p,q] = u[s,s]) in * row-wise format, and determine largest row number t such that * u[s,t] != 0 */ t = (vpq == 0.0 ? 0 : s); for (k = 1; k <= len; k++) { /* get row index of v[i,q] */ i = ind[k]; /* put v[i,q] to i-th row */ if (vr_cap[i] == vr_len[i]) { /* reserve extra locations in i-th row to reduce further * relocations of that row */ #if 1 /* FIXME */ int need = vr_len[i] + 5; #endif if (sva->r_ptr - sva->m_ptr < need) { sva_more_space(sva, need); sv_ind = sva->ind; sv_val = sva->val; } sva_enlarge_cap(sva, vr_ref-1+i, need, 0); } sv_ind[ptr = vr_ptr[i] + (vr_len[i]++)] = q; sv_val[ptr] = val[k]; /* v[i,q] is non-zero; increase t */ if (t < pp_ind[i]) t = pp_ind[i]; } /*--------------------------------------------------------------*/ /* check if matrix U is already upper triangular */ /*--------------------------------------------------------------*/ /* check if there is a spike in s-th column of matrix U, which * is q-th column of matrix V */ if (s >= t) { /* no spike; matrix U is already upper triangular */ /* store its diagonal element u[s,s] = v[p,q] */ vr_piv[p] = vpq; if (s > t) { /* matrix U is structurally singular, because its diagonal * element u[s,s] = v[p,q] is exact zero */ xassert(vpq == 0.0); return 1; } #if 1 /* FIXME */ else if (-vpq_tol < vpq && vpq < +vpq_tol) #endif { /* matrix U is not well conditioned, because its diagonal * element u[s,s] = v[p,q] is too small in magnitude */ return 2; } else { /* normal case */ return 0; } } /*--------------------------------------------------------------*/ /* perform implicit symmetric permutations of rows and columns */ /* of matrix U */ /*--------------------------------------------------------------*/ /* currently v[p,q] = u[s,s] */ xassert(p == pp_inv[s] && q == qq_ind[s]); for (k = s; k < t; k++) { pp_ind[pp_inv[k] = pp_inv[k+1]] = k; qq_inv[qq_ind[k] = qq_ind[k+1]] = k; } /* now v[p,q] = u[t,t] */ pp_ind[pp_inv[t] = p] = qq_inv[qq_ind[t] = q] = t; /*--------------------------------------------------------------*/ /* check if matrix U is already upper triangular */ /*--------------------------------------------------------------*/ /* check if there is a spike in t-th row of matrix U, which is * p-th row of matrix V */ for (p_end = (p_ptr = vr_ptr[p]) + vr_len[p]; p_ptr < p_end; p_ptr++) { if (qq_inv[sv_ind[p_ptr]] < t) break; /* spike detected */ } if (p_ptr == p_end) { /* no spike; matrix U is already upper triangular */ /* store its diagonal element u[t,t] = v[p,q] */ vr_piv[p] = vpq; #if 1 /* FIXME */ if (-vpq_tol < vpq && vpq < +vpq_tol) #endif { /* matrix U is not well conditioned, because its diagonal * element u[t,t] = v[p,q] is too small in magnitude */ return 2; } else { /* normal case */ return 0; } } /*--------------------------------------------------------------*/ /* copy p-th row of matrix V, which is t-th row of matrix U, to */ /* working array */ /*--------------------------------------------------------------*/ /* copy p-th row of matrix V, including element v[p,q] = u[t,t], * to the working array in dense format and remove these elements * from matrix V; since no pivoting is used, only this row will * change during elimination */ for (j = 1; j <= n; j++) work[j] = 0.0; work[q] = vpq; for (p_end = (p_ptr = vr_ptr[p]) + vr_len[p]; p_ptr < p_end; p_ptr++) { /* get column index of v[p,j] and store this element to the * working array */ work[j = sv_ind[p_ptr]] = sv_val[p_ptr]; /* find and remove v[p,j] from j-th column */ for (j_end = (j_ptr = vc_ptr[j]) + vc_len[j]; sv_ind[j_ptr] != p; j_ptr++) /* nop */; xassert(j_ptr < j_end); sv_ind[j_ptr] = sv_ind[j_end-1]; sv_val[j_ptr] = sv_val[j_end-1]; vc_len[j]--; } /* now p-th row of matrix V is temporarily empty */ vr_len[p] = 0; /*--------------------------------------------------------------*/ /* perform gaussian elimination */ /*--------------------------------------------------------------*/ /* transform p-th row of matrix V stored in working array, which * is t-th row of matrix U, to eliminate subdiagonal elements * u[t,s], ..., u[t,t-1]; corresponding gaussian multipliers will * form non-trivial row of new row-like factor */ nnz = 0; /* number of non-zero gaussian multipliers */ for (k = s; k < t; k++) { /* diagonal element u[k,k] = v[i,j] is used as pivot */ i = pp_inv[k], j = qq_ind[k]; /* take subdiagonal element u[t,k] = v[p,j] */ temp = work[j]; #if 1 /* FIXME */ if (-eps_tol < temp && temp < +eps_tol) continue; #endif /* compute and save gaussian multiplier: * f := u[t,k] / u[k,k] = v[p,j] / v[i,j] */ ind[++nnz] = i; val[nnz] = f = work[j] / vr_piv[i]; /* gaussian transformation to eliminate u[t,k] = v[p,j]: * (p-th row of V) := (p-th row of V) - f * (i-th row of V) */ for (i_end = (i_ptr = vr_ptr[i]) + vr_len[i]; i_ptr < i_end; i_ptr++) work[sv_ind[i_ptr]] -= f * sv_val[i_ptr]; } /* now matrix U is again upper triangular */ #if 1 /* FIXME */ if (-vpq_tol < work[q] && work[q] < +vpq_tol) #endif { /* however, its new diagonal element u[t,t] = v[p,q] is too * small in magnitude */ return 3; } /*--------------------------------------------------------------*/ /* create new row-like factor H[k] and add to eta file H */ /*--------------------------------------------------------------*/ /* (nnz = 0 means that all subdiagonal elements were too small * in magnitude) */ if (nnz > 0) { if (fhv->nfs == fhv->nfs_max) { /* maximal number of row-like factors has been reached */ return 4; } k = ++(fhv->nfs); hh_ind[k] = p; /* store non-trivial row of H[k] in right (dynamic) part of * SVA (diagonal unity element is not stored) */ if (sva->r_ptr - sva->m_ptr < nnz) { sva_more_space(sva, nnz); sv_ind = sva->ind; sv_val = sva->val; } sva_reserve_cap(sva, fhv->hh_ref-1+k, nnz); ptr = hh_ptr[k]; memcpy(&sv_ind[ptr], &ind[1], nnz * sizeof(int)); memcpy(&sv_val[ptr], &val[1], nnz * sizeof(double)); hh_len[k] = nnz; } /*--------------------------------------------------------------*/ /* copy transformed p-th row of matrix V, which is t-th row of */ /* matrix U, from working array back to matrix V */ /*--------------------------------------------------------------*/ /* copy elements of transformed p-th row of matrix V, which are * non-diagonal elements u[t,t+1], ..., u[t,n] of matrix U, from * working array to corresponding columns of matrix V (note that * diagonal element u[t,t] = v[p,q] not copied); also transform * p-th row of matrix V to sparse format */ len = 0; for (k = t+1; k <= n; k++) { /* j-th column of V = k-th column of U */ j = qq_ind[k]; /* take non-diagonal element v[p,j] = u[t,k] */ temp = work[j]; #if 1 /* FIXME */ if (-eps_tol < temp && temp < +eps_tol) continue; #endif /* add v[p,j] to j-th column of matrix V */ if (vc_cap[j] == vc_len[j]) { /* reserve extra locations in j-th column to reduce further * relocations of that column */ #if 1 /* FIXME */ int need = vc_len[j] + 5; #endif if (sva->r_ptr - sva->m_ptr < need) { sva_more_space(sva, need); sv_ind = sva->ind; sv_val = sva->val; } sva_enlarge_cap(sva, vc_ref-1+j, need, 0); } sv_ind[ptr = vc_ptr[j] + (vc_len[j]++)] = p; sv_val[ptr] = temp; /* store element v[p,j] = u[t,k] to working sparse vector */ ind[++len] = j; val[len] = temp; } /* copy elements from working sparse vector to p-th row of matrix * V (this row is currently empty) */ if (vr_cap[p] < len) { if (sva->r_ptr - sva->m_ptr < len) { sva_more_space(sva, len); sv_ind = sva->ind; sv_val = sva->val; } sva_enlarge_cap(sva, vr_ref-1+p, len, 0); } ptr = vr_ptr[p]; memcpy(&sv_ind[ptr], &ind[1], len * sizeof(int)); memcpy(&sv_val[ptr], &val[1], len * sizeof(double)); vr_len[p] = len; /* store new diagonal element u[t,t] = v[p,q] */ vr_piv[p] = work[q]; /*--------------------------------------------------------------*/ /* perform accuracy test (only if new H[k] was added) */ /*--------------------------------------------------------------*/ if (nnz > 0) { /* copy p-th (non-trivial) row of row-like factor H[k] (except * unity diagonal element) to working array in dense format */ for (j = 1; j <= n; j++) work[j] = 0.0; k = fhv->nfs; for (end = (ptr = hh_ptr[k]) + hh_len[k]; ptr < end; ptr++) work[sv_ind[ptr]] = sv_val[ptr]; /* compute inner product of p-th (non-trivial) row of matrix * H[k] and q-th column of matrix V */ temp = vr_piv[p]; /* 1 * v[p,q] */ ptr = vc_ptr[q]; end = ptr + vc_len[q]; for (; ptr < end; ptr++) temp += work[sv_ind[ptr]] * sv_val[ptr]; /* inner product should be equal to element v[p,q] *before* * matrix V was transformed */ /* compute relative error */ temp = fabs(vpq - temp) / (1.0 + fabs(vpq)); #if 1 /* FIXME */ if (temp > err_tol) #endif { /* relative error is too large */ return 5; } } /* factorization has been successfully updated */ return 0; } /*********************************************************************** * fhv_h_solve - solve system H * x = b * * This routine solves the system H * x = b, where the matrix H is the * middle factor of the sparse updatable FHV-factorization. * * On entry the array x should contain elements of the right-hand side * vector b in locations x[1], ..., x[n], where n is the order of the * matrix H. On exit this array will contain elements of the solution * vector x in the same locations. */ void fhv_h_solve(FHV *fhv, double x[/*1+n*/]) { SVA *sva = fhv->luf->sva; int *sv_ind = sva->ind; double *sv_val = sva->val; int nfs = fhv->nfs; int *hh_ind = fhv->hh_ind; int hh_ref = fhv->hh_ref; int *hh_ptr = &sva->ptr[hh_ref-1]; int *hh_len = &sva->len[hh_ref-1]; int i, k, end, ptr; double x_i; for (k = 1; k <= nfs; k++) { x_i = x[i = hh_ind[k]]; for (end = (ptr = hh_ptr[k]) + hh_len[k]; ptr < end; ptr++) x_i -= sv_val[ptr] * x[sv_ind[ptr]]; x[i] = x_i; } return; } /*********************************************************************** * fhv_ht_solve - solve system H' * x = b * * This routine solves the system H' * x = b, where H' is a matrix * transposed to the matrix H, which is the middle factor of the sparse * updatable FHV-factorization. * * On entry the array x should contain elements of the right-hand side * vector b in locations x[1], ..., x[n], where n is the order of the * matrix H. On exit this array will contain elements of the solution * vector x in the same locations. */ void fhv_ht_solve(FHV *fhv, double x[/*1+n*/]) { SVA *sva = fhv->luf->sva; int *sv_ind = sva->ind; double *sv_val = sva->val; int nfs = fhv->nfs; int *hh_ind = fhv->hh_ind; int hh_ref = fhv->hh_ref; int *hh_ptr = &sva->ptr[hh_ref-1]; int *hh_len = &sva->len[hh_ref-1]; int k, end, ptr; double x_j; for (k = nfs; k >= 1; k--) { if ((x_j = x[hh_ind[k]]) == 0.0) continue; for (end = (ptr = hh_ptr[k]) + hh_len[k]; ptr < end; ptr++) x[sv_ind[ptr]] -= sv_val[ptr] * x_j; } return; } /* eof */