/* luf.h (sparse LU-factorization) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2012-2013 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #ifndef LUF_H #define LUF_H #include "sva.h" /*********************************************************************** * The structure LUF describes sparse LU-factorization. * * The LU-factorization has the following format: * * A = F * V = P * L * U * Q, (1) * * F = P * L * P', (2) * * V = P * U * Q, (3) * * where A is a given (unsymmetric) square matrix, F and V are matrix * factors actually computed, L is a lower triangular matrix with unity * diagonal, U is an upper triangular matrix, P and Q are permutation * matrices, P' is a matrix transposed to P. All the matrices have the * same order n. * * Matrices F and V are stored in both row- and column-wise sparse * formats in the associated sparse vector area (SVA). Unity diagonal * elements of matrix F are not stored. Pivot elements of matrix V * (which correspond to diagonal elements of matrix U) are stored in * a separate ordinary array. * * Permutation matrices P and Q are stored in ordinary arrays in both * row- and column-like formats. * * Matrices L and U are completely defined by matrices F, V, P, and Q, * and therefore not stored explicitly. */ typedef struct LUF LUF; struct LUF { /* sparse LU-factorization */ int n; /* order of matrices A, F, V, P, Q */ SVA *sva; /* associated sparse vector area (SVA) used to store rows and * columns of matrices F and V; note that different objects may * share the same SVA */ /*--------------------------------------------------------------*/ /* matrix F in row-wise format */ /* during the factorization process this object is not used */ int fr_ref; /* reference number of sparse vector in SVA, which is the first * row of matrix F */ #if 0 + 0 int *fr_ptr = &sva->ptr[fr_ref-1]; /* fr_ptr[0] is not used; * fr_ptr[i], 1 <= i <= n, is pointer to i-th row in SVA */ int *fr_len = &sva->len[fr_ref-1]; /* fr_len[0] is not used; * fr_len[i], 1 <= i <= n, is length of i-th row */ #endif /*--------------------------------------------------------------*/ /* matrix F in column-wise format */ /* during the factorization process this object is constructed * by columns */ int fc_ref; /* reference number of sparse vector in SVA, which is the first * column of matrix F */ #if 0 + 0 int *fc_ptr = &sva->ptr[fc_ref-1]; /* fc_ptr[0] is not used; * fc_ptr[j], 1 <= j <= n, is pointer to j-th column in SVA */ int *fc_len = &sva->len[fc_ref-1]; /* fc_len[0] is not used; * fc_len[j], 1 <= j <= n, is length of j-th column */ #endif /*--------------------------------------------------------------*/ /* matrix V in row-wise format */ int vr_ref; /* reference number of sparse vector in SVA, which is the first * row of matrix V */ #if 0 + 0 int *vr_ptr = &sva->ptr[vr_ref-1]; /* vr_ptr[0] is not used; * vr_ptr[i], 1 <= i <= n, is pointer to i-th row in SVA */ int *vr_len = &sva->len[vr_ref-1]; /* vr_len[0] is not used; * vr_len[i], 1 <= i <= n, is length of i-th row */ int *vr_cap = &sva->cap[vr_ref-1]; /* vr_cap[0] is not used; * vr_cap[i], 1 <= i <= n, is capacity of i-th row */ #endif double *vr_piv; /* double vr_piv[1+n]; */ /* vr_piv[0] is not used; * vr_piv[i], 1 <= i <= n, is pivot element of i-th row */ /*--------------------------------------------------------------*/ /* matrix V in column-wise format */ /* during the factorization process this object contains only the * patterns (row indices) of columns of the active submatrix */ int vc_ref; /* reference number of sparse vector in SVA, which is the first * column of matrix V */ #if 0 + 0 int *vc_ptr = &sva->ptr[vc_ref-1]; /* vc_ptr[0] is not used; * vc_ptr[j], 1 <= j <= n, is pointer to j-th column in SVA */ int *vc_len = &sva->len[vc_ref-1]; /* vc_len[0] is not used; * vc_len[j], 1 <= j <= n, is length of j-th column */ int *vc_cap = &sva->cap[vc_ref-1]; /* vc_cap[0] is not used; * vc_cap[j], 1 <= j <= n, is capacity of j-th column */ #endif /*--------------------------------------------------------------*/ /* matrix P */ int *pp_ind; /* int pp_ind[1+n]; */ /* pp_ind[i] = j means that P[i,j] = 1 */ int *pp_inv; /* int pp_inv[1+n]; */ /* pp_inv[j] = i means that P[i,j] = 1 */ /* if i-th row or column of matrix F is i'-th row or column of * matrix L, or if i-th row of matrix V is i'-th row of matrix U, * then pp_ind[i] = i' and pp_inv[i'] = i */ /*--------------------------------------------------------------*/ /* matrix Q */ int *qq_ind; /* int qq_ind[1+n]; */ /* qq_ind[i] = j means that Q[i,j] = 1 */ int *qq_inv; /* int qq_inv[1+n]; */ /* qq_inv[j] = i means that Q[i,j] = 1 */ /* if j-th column of matrix V is j'-th column of matrix U, then * qq_ind[j'] = j and qq_inv[j] = j' */ }; #define luf_swap_u_rows(i1, i2) \ do \ { int j1, j2; \ j1 = pp_inv[i1], j2 = pp_inv[i2]; \ pp_ind[j1] = i2, pp_inv[i2] = j1; \ pp_ind[j2] = i1, pp_inv[i1] = j2; \ } while (0) /* swap rows i1 and i2 of matrix U = P'* V * Q' */ #define luf_swap_u_cols(j1, j2) \ do \ { int i1, i2; \ i1 = qq_ind[j1], i2 = qq_ind[j2]; \ qq_ind[j1] = i2, qq_inv[i2] = j1; \ qq_ind[j2] = i1, qq_inv[i1] = j2; \ } while (0) /* swap columns j1 and j2 of matrix U = P'* V * Q' */ #define luf_store_v_cols _glp_luf_store_v_cols int luf_store_v_cols(LUF *luf, int (*col)(void *info, int j, int ind[], double val[]), void *info, int ind[], double val[]); /* store matrix V = A in column-wise format */ #define luf_check_all _glp_luf_check_all void luf_check_all(LUF *luf, int k); /* check LU-factorization before k-th elimination step */ #define luf_build_v_rows _glp_luf_build_v_rows void luf_build_v_rows(LUF *luf, int len[/*1+n*/]); /* build matrix V in row-wise format */ #define luf_build_f_rows _glp_luf_build_f_rows void luf_build_f_rows(LUF *luf, int len[/*1+n*/]); /* build matrix F in row-wise format */ #define luf_build_v_cols _glp_luf_build_v_cols void luf_build_v_cols(LUF *luf, int updat, int len[/*1+n*/]); /* build matrix V in column-wise format */ #define luf_check_f_rc _glp_luf_check_f_rc void luf_check_f_rc(LUF *luf); /* check rows and columns of matrix F */ #define luf_check_v_rc _glp_luf_check_v_rc void luf_check_v_rc(LUF *luf); /* check rows and columns of matrix V */ #define luf_f_solve _glp_luf_f_solve void luf_f_solve(LUF *luf, double x[/*1+n*/]); /* solve system F * x = b */ #define luf_ft_solve _glp_luf_ft_solve void luf_ft_solve(LUF *luf, double x[/*1+n*/]); /* solve system F' * x = b */ #define luf_v_solve _glp_luf_v_solve void luf_v_solve(LUF *luf, double b[/*1+n*/], double x[/*1+n*/]); /* solve system V * x = b */ #define luf_vt_solve _glp_luf_vt_solve void luf_vt_solve(LUF *luf, double b[/*1+n*/], double x[/*1+n*/]); /* solve system V' * x = b */ #define luf_vt_solve1 _glp_luf_vt_solve1 void luf_vt_solve1(LUF *luf, double e[/*1+n*/], double y[/*1+n*/]); /* solve system V' * y = e' to cause growth in y */ #define luf_estimate_norm _glp_luf_estimate_norm double luf_estimate_norm(LUF *luf, double w1[/*1+n*/], double w2[/*1+n*/]); /* estimate 1-norm of inv(A) */ #endif /* eof */