/* scf.h (sparse updatable Schur-complement-based factorization) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2013-2014 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #ifndef SCF_H #define SCF_H #include "btf.h" #include "ifu.h" #include "luf.h" /*********************************************************************** * The structure SCF describes sparse updatable factorization based on * Schur complement. * * The SCF-factorization has the following format: * * ( A A1~ ) ( A0 A1 ) ( R0 ) ( S0 S ) * ( ) = P ( ) Q = P ( ) ( ) Q, (1) * ( A2~ A3~ ) ( A2 A3 ) ( R I ) ( C ) * * where: * * A is current (unsymmetric) square matrix (not stored); * * A1~, A2~, A3~ are some additional matrices (not stored); * * A0 is initial (unsymmetric) square matrix (not stored); * * A1, A2, A3 are some additional matrices (not stored); * * R0 and S0 are matrices that define factorization of the initial * matrix A0 = R0 * S0 (stored in an invertable form); * * R is a matrix defined from R * S0 = A2, so R = A2 * inv(S0) (stored * in row-wise sparse format); * * S is a matrix defined from R0 * S = A1, so S = inv(R0) * A1 (stored * in column-wise sparse format); * * C is Schur complement (to matrix A0) defined from R * S + C = A3, * so C = A3 - R * S = A3 - A2 * inv(A0) * A1 (stored in an invertable * form). * * P, Q are permutation matrices (stored in both row- and column-like * formats). */ typedef struct SCF SCF; struct SCF { /* Schur-complement-based factorization */ int n; /* order of current matrix A */ /*--------------------------------------------------------------*/ /* initial matrix A0 = R0 * S0 of order n0 in invertable form */ int n0; /* order of matrix A0 */ int type; /* type of factorization used: * 1 - LU-factorization (R0 = F0, S0 = V0) * 2 - BT-factorization (R0 = I, S0 = A0) */ union { LUF *luf; /* type = 1 */ BTF *btf; /* type = 2 */ } a0; /* factorization of matrix A0 */ /*--------------------------------------------------------------*/ /* augmented matrix (A0, A1; A2, A3) of order n0+nn */ int nn_max; /* maximal number of additional rows and columns in the augmented * matrix (this limits the number of updates) */ int nn; /* current number of additional rows and columns in the augmented * matrix, 0 <= nn <= nn_max */ SVA *sva; /* associated sparse vector area (SVA) used to store rows of * matrix R and columns of matrix S */ /*--------------------------------------------------------------*/ /* nn*n0-matrix R in row-wise format */ int rr_ref; /* reference number of sparse vector in SVA, which is the first * row of matrix R */ #if 0 + 0 int *rr_ptr = &sva->ptr[rr_ref-1]; /* rr_ptr[0] is not used; * rr_ptr[i], 1 <= i <= nn, is pointer to i-th row in SVA; * rr_ptr[nn+1,...,nn_max] are reserved locations */ int *rr_len = &sva->len[rr_ref-1]; /* rr_len[0] is not used; * rr_len[i], 1 <= i <= nn, is length of i-th row; * rr_len[nn+1,...,nn_max] are reserved locations */ #endif /*--------------------------------------------------------------*/ /* n0*nn-matrix S in column-wise format */ int ss_ref; /* reference number of sparse vector in SVA, which is the first * column of matrix S */ #if 0 + 0 int *ss_ptr = &sva->ptr[ss_ref-1]; /* ss_ptr[0] is not used; * ss_ptr[j], 1 <= j <= nn, is pointer to j-th column in SVA; * ss_ptr[nn+1,...,nn_max] are reserved locations */ int *ss_len = &sva->len[ss_ref-1]; /* ss_len[0] is not used; * ss_len[j], 1 <= j <= nn, is length of j-th column; * ss_len[nn+1,...,nn_max] are reserved locations */ #endif /*--------------------------------------------------------------*/ /* Schur complement C of order nn in invertable form */ IFU ifu; /* IFU-factorization of matrix C */ /*--------------------------------------------------------------*/ /* permutation matrix P of order n0+nn */ int *pp_ind; /* int pp_ind[1+n0+nn_max]; */ /* pp_ind[i] = j means that P[i,j] = 1 */ int *pp_inv; /* int pp_inv[1+n0+nn_max]; */ /* pp_inv[j] = i means that P[i,j] = 1 */ /*--------------------------------------------------------------*/ /* permutation matrix Q of order n0+nn */ int *qq_ind; /* int qq_ind[1+n0+nn_max]; */ /* qq_ind[i] = j means that Q[i,j] = 1 */ int *qq_inv; /* int qq_inv[1+n0+nn_max]; */ /* qq_inv[j] = i means that Q[i,j] = 1 */ }; #define scf_swap_q_cols(j1, j2) \ do \ { int i1, i2; \ i1 = qq_inv[j1], i2 = qq_inv[j2]; \ qq_ind[i1] = j2, qq_inv[j2] = i1; \ qq_ind[i2] = j1, qq_inv[j1] = i2; \ } while (0) /* swap columns j1 and j2 of permutation matrix Q */ #define scf_r0_solve _glp_scf_r0_solve void scf_r0_solve(SCF *scf, int tr, double x[/*1+n0*/]); /* solve system R0 * x = b or R0'* x = b */ #define scf_s0_solve _glp_scf_s0_solve void scf_s0_solve(SCF *scf, int tr, double x[/*1+n0*/], double w1[/*1+n0*/], double w2[/*1+n0*/], double w3[/*1+n0*/]); /* solve system S0 * x = b or S0'* x = b */ #define scf_r_prod _glp_scf_r_prod void scf_r_prod(SCF *scf, double y[/*1+nn*/], double a, const double x[/*1+n0*/]); /* compute product y := y + alpha * R * x */ #define scf_rt_prod _glp_scf_rt_prod void scf_rt_prod(SCF *scf, double y[/*1+n0*/], double a, const double x[/*1+nn*/]); /* compute product y := y + alpha * R'* x */ #define scf_s_prod _glp_scf_s_prod void scf_s_prod(SCF *scf, double y[/*1+n0*/], double a, const double x[/*1+nn*/]); /* compute product y := y + alpha * S * x */ #define scf_st_prod _glp_scf_st_prod void scf_st_prod(SCF *scf, double y[/*1+nn*/], double a, const double x[/*1+n0*/]); /* compute product y := y + alpha * S'* x */ #define scf_a_solve _glp_scf_a_solve void scf_a_solve(SCF *scf, double x[/*1+n*/], double w[/*1+n0+nn*/], double work1[/*1+max(n0,nn)*/], double work2[/*1+n*/], double work3[/*1+n*/]); /* solve system A * x = b */ #define scf_at_solve _glp_scf_at_solve void scf_at_solve(SCF *scf, double x[/*1+n*/], double w[/*1+n0+nn*/], double work1[/*1+max(n0,nn)*/], double work2[/*1+n*/], double work3[/*1+n*/]); /* solve system A'* x = b */ #define scf_add_r_row _glp_scf_add_r_row void scf_add_r_row(SCF *scf, const double w[/*1+n0*/]); /* add new row to matrix R */ #define scf_add_s_col _glp_scf_add_s_col void scf_add_s_col(SCF *scf, const double v[/*1+n0*/]); /* add new column to matrix S */ #define scf_update_aug _glp_scf_update_aug int scf_update_aug(SCF *scf, double b[/*1+n0*/], double d[/*1+n0*/], double f[/*1+nn*/], double g[/*1+nn*/], double h, int upd, double w1[/*1+n0*/], double w2[/*1+n0*/], double w3[/*1+n0*/]); /* update factorization of augmented matrix */ #endif /* eof */