/* bfd.c (LP basis factorization driver) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2007-2014 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "glpk.h" #include "env.h" #include "bfd.h" #include "fhvint.h" #include "scfint.h" #ifdef GLP_DEBUG #include "glpspm.h" #endif struct BFD { /* LP basis factorization driver */ int valid; /* factorization is valid only if this flag is set */ int type; /* type of factorization used: 0 - interface not established yet 1 - FHV-factorization 2 - Schur-complement-based factorization */ union { void *none; /* type = 0 */ FHVINT *fhvi; /* type = 1 */ SCFINT *scfi; /* type = 2 */ } u; /* interface to factorization of LP basis */ glp_bfcp parm; /* factorization control parameters */ #ifdef GLP_DEBUG SPM *B; /* current basis (for testing/debugging only) */ #endif int upd_cnt; /* factorization update count */ #if 1 /* 21/IV-2014 */ double b_norm; /* 1-norm of matrix B */ double i_norm; /* estimated 1-norm of matrix inv(B) */ #endif }; BFD *bfd_create_it(void) { /* create LP basis factorization */ BFD *bfd; #ifdef GLP_DEBUG xprintf("bfd_create_it: warning: debugging version used\n"); #endif bfd = talloc(1, BFD); bfd->valid = 0; bfd->type = 0; bfd->u.none = NULL; bfd_set_bfcp(bfd, NULL); #ifdef GLP_DEBUG bfd->B = NULL; #endif bfd->upd_cnt = 0; return bfd; } #if 0 /* 08/III-2014 */ void bfd_set_parm(BFD *bfd, const void *parm) { /* change LP basis factorization control parameters */ memcpy(&bfd->parm, parm, sizeof(glp_bfcp)); return; } #endif void bfd_get_bfcp(BFD *bfd, void /* glp_bfcp */ *parm) { /* retrieve LP basis factorization control parameters */ memcpy(parm, &bfd->parm, sizeof(glp_bfcp)); return; } void bfd_set_bfcp(BFD *bfd, const void /* glp_bfcp */ *parm) { /* change LP basis factorization control parameters */ if (parm == NULL) { /* reset to default */ memset(&bfd->parm, 0, sizeof(glp_bfcp)); bfd->parm.type = GLP_BF_LUF + GLP_BF_FT; bfd->parm.piv_tol = 0.10; bfd->parm.piv_lim = 4; bfd->parm.suhl = 1; bfd->parm.eps_tol = DBL_EPSILON; bfd->parm.nfs_max = 100; bfd->parm.nrs_max = 70; } else memcpy(&bfd->parm, parm, sizeof(glp_bfcp)); return; } #if 1 /* 21/IV-2014 */ struct bfd_info { BFD *bfd; int (*col)(void *info, int j, int ind[], double val[]); void *info; }; static int bfd_col(void *info_, int j, int ind[], double val[]) { struct bfd_info *info = info_; int t, len; double sum; len = info->col(info->info, j, ind, val); sum = 0.0; for (t = 1; t <= len; t++) { if (val[t] >= 0.0) sum += val[t]; else sum -= val[t]; } if (info->bfd->b_norm < sum) info->bfd->b_norm = sum; return len; } #endif int bfd_factorize(BFD *bfd, int m, /*const int bh[],*/ int (*col1) (void *info, int j, int ind[], double val[]), void *info1) { /* compute LP basis factorization */ #if 1 /* 21/IV-2014 */ struct bfd_info info; #endif int type, ret; /*xassert(bh == bh);*/ /* invalidate current factorization */ bfd->valid = 0; /* determine required factorization type */ switch (bfd->parm.type) { case GLP_BF_LUF + GLP_BF_FT: type = 1; break; case GLP_BF_LUF + GLP_BF_BG: case GLP_BF_LUF + GLP_BF_GR: case GLP_BF_BTF + GLP_BF_BG: case GLP_BF_BTF + GLP_BF_GR: type = 2; break; default: xassert(bfd != bfd); } /* delete factorization interface, if necessary */ switch (bfd->type) { case 0: break; case 1: if (type != 1) { bfd->type = 0; fhvint_delete(bfd->u.fhvi); bfd->u.fhvi = NULL; } break; case 2: if (type != 2) { bfd->type = 0; scfint_delete(bfd->u.scfi); bfd->u.scfi = NULL; } break; default: xassert(bfd != bfd); } /* establish factorization interface, if necessary */ if (bfd->type == 0) { switch (type) { case 1: bfd->type = 1; xassert(bfd->u.fhvi == NULL); bfd->u.fhvi = fhvint_create(); break; case 2: bfd->type = 2; xassert(bfd->u.scfi == NULL); if (!(bfd->parm.type & GLP_BF_BTF)) bfd->u.scfi = scfint_create(1); else bfd->u.scfi = scfint_create(2); break; default: xassert(type != type); } } /* try to compute factorization */ #if 1 /* 21/IV-2014 */ bfd->b_norm = bfd->i_norm = 0.0; info.bfd = bfd; info.col = col1; info.info = info1; #endif switch (bfd->type) { case 1: bfd->u.fhvi->lufi->sgf_piv_tol = bfd->parm.piv_tol; bfd->u.fhvi->lufi->sgf_piv_lim = bfd->parm.piv_lim; bfd->u.fhvi->lufi->sgf_suhl = bfd->parm.suhl; bfd->u.fhvi->lufi->sgf_eps_tol = bfd->parm.eps_tol; bfd->u.fhvi->nfs_max = bfd->parm.nfs_max; ret = fhvint_factorize(bfd->u.fhvi, m, bfd_col, &info); #if 1 /* FIXME */ if (ret == 0) bfd->i_norm = fhvint_estimate(bfd->u.fhvi); else ret = BFD_ESING; #endif break; case 2: if (bfd->u.scfi->scf.type == 1) { bfd->u.scfi->u.lufi->sgf_piv_tol = bfd->parm.piv_tol; bfd->u.scfi->u.lufi->sgf_piv_lim = bfd->parm.piv_lim; bfd->u.scfi->u.lufi->sgf_suhl = bfd->parm.suhl; bfd->u.scfi->u.lufi->sgf_eps_tol = bfd->parm.eps_tol; } else if (bfd->u.scfi->scf.type == 2) { bfd->u.scfi->u.btfi->sgf_piv_tol = bfd->parm.piv_tol; bfd->u.scfi->u.btfi->sgf_piv_lim = bfd->parm.piv_lim; bfd->u.scfi->u.btfi->sgf_suhl = bfd->parm.suhl; bfd->u.scfi->u.btfi->sgf_eps_tol = bfd->parm.eps_tol; } else xassert(bfd != bfd); bfd->u.scfi->nn_max = bfd->parm.nrs_max; ret = scfint_factorize(bfd->u.scfi, m, bfd_col, &info); #if 1 /* FIXME */ if (ret == 0) bfd->i_norm = scfint_estimate(bfd->u.scfi); else ret = BFD_ESING; #endif break; default: xassert(bfd != bfd); } #ifdef GLP_DEBUG /* save specified LP basis */ if (bfd->B != NULL) spm_delete_mat(bfd->B); bfd->B = spm_create_mat(m, m); { int *ind = talloc(1+m, int); double *val = talloc(1+m, double); int j, k, len; for (j = 1; j <= m; j++) { len = col(info, j, ind, val); for (k = 1; k <= len; k++) spm_new_elem(bfd->B, ind[k], j, val[k]); } tfree(ind); tfree(val); } #endif if (ret == 0) { /* factorization has been successfully computed */ double cond; bfd->valid = 1; #ifdef GLP_DEBUG cond = bfd_condest(bfd); if (cond > 1e9) xprintf("bfd_factorize: warning: cond(B) = %g\n", cond); #endif } #ifdef GLP_DEBUG xprintf("bfd_factorize: m = %d; ret = %d\n", m, ret); #endif bfd->upd_cnt = 0; return ret; } #if 0 /* 21/IV-2014 */ double bfd_estimate(BFD *bfd) { /* estimate 1-norm of inv(B) */ double norm; xassert(bfd->valid); xassert(bfd->upd_cnt == 0); switch (bfd->type) { case 1: norm = fhvint_estimate(bfd->u.fhvi); break; case 2: norm = scfint_estimate(bfd->u.scfi); break; default: xassert(bfd != bfd); } return norm; } #endif #if 1 /* 21/IV-2014 */ double bfd_condest(BFD *bfd) { /* estimate condition of B */ double cond; xassert(bfd->valid); /*xassert(bfd->upd_cnt == 0);*/ cond = bfd->b_norm * bfd->i_norm; if (cond < 1.0) cond = 1.0; return cond; } #endif void bfd_ftran(BFD *bfd, double x[]) { /* perform forward transformation (solve system B * x = b) */ #ifdef GLP_DEBUG SPM *B = bfd->B; int m = B->m; double *b = talloc(1+m, double); SPME *e; int k; double s, relerr, maxerr; for (k = 1; k <= m; k++) b[k] = x[k]; #endif xassert(bfd->valid); switch (bfd->type) { case 1: fhvint_ftran(bfd->u.fhvi, x); break; case 2: scfint_ftran(bfd->u.scfi, x); break; default: xassert(bfd != bfd); } #ifdef GLP_DEBUG maxerr = 0.0; for (k = 1; k <= m; k++) { s = 0.0; for (e = B->row[k]; e != NULL; e = e->r_next) s += e->val * x[e->j]; relerr = (b[k] - s) / (1.0 + fabs(b[k])); if (maxerr < relerr) maxerr = relerr; } if (maxerr > 1e-8) xprintf("bfd_ftran: maxerr = %g; relative error too large\n", maxerr); tfree(b); #endif return; } #if 1 /* 30/III-2016 */ void bfd_ftran_s(BFD *bfd, FVS *x) { /* sparse version of bfd_ftran */ /* (sparse mode is not implemented yet) */ int n = x->n; int *ind = x->ind; double *vec = x->vec; int j, nnz = 0; bfd_ftran(bfd, vec); for (j = n; j >= 1; j--) { if (vec[j] != 0.0) ind[++nnz] = j; } x->nnz = nnz; return; } #endif void bfd_btran(BFD *bfd, double x[]) { /* perform backward transformation (solve system B'* x = b) */ #ifdef GLP_DEBUG SPM *B = bfd->B; int m = B->m; double *b = talloc(1+m, double); SPME *e; int k; double s, relerr, maxerr; for (k = 1; k <= m; k++) b[k] = x[k]; #endif xassert(bfd->valid); switch (bfd->type) { case 1: fhvint_btran(bfd->u.fhvi, x); break; case 2: scfint_btran(bfd->u.scfi, x); break; default: xassert(bfd != bfd); } #ifdef GLP_DEBUG maxerr = 0.0; for (k = 1; k <= m; k++) { s = 0.0; for (e = B->col[k]; e != NULL; e = e->c_next) s += e->val * x[e->i]; relerr = (b[k] - s) / (1.0 + fabs(b[k])); if (maxerr < relerr) maxerr = relerr; } if (maxerr > 1e-8) xprintf("bfd_btran: maxerr = %g; relative error too large\n", maxerr); tfree(b); #endif return; } #if 1 /* 30/III-2016 */ void bfd_btran_s(BFD *bfd, FVS *x) { /* sparse version of bfd_btran */ /* (sparse mode is not implemented yet) */ int n = x->n; int *ind = x->ind; double *vec = x->vec; int j, nnz = 0; bfd_btran(bfd, vec); for (j = n; j >= 1; j--) { if (vec[j] != 0.0) ind[++nnz] = j; } x->nnz = nnz; return; } #endif int bfd_update(BFD *bfd, int j, int len, const int ind[], const double val[]) { /* update LP basis factorization */ int ret; xassert(bfd->valid); switch (bfd->type) { case 1: ret = fhvint_update(bfd->u.fhvi, j, len, ind, val); #if 1 /* FIXME */ switch (ret) { case 0: break; case 1: ret = BFD_ESING; break; case 2: case 3: ret = BFD_ECOND; break; case 4: ret = BFD_ELIMIT; break; case 5: ret = BFD_ECHECK; break; default: xassert(ret != ret); } #endif break; case 2: switch (bfd->parm.type & 0x0F) { case GLP_BF_BG: ret = scfint_update(bfd->u.scfi, 1, j, len, ind, val); break; case GLP_BF_GR: ret = scfint_update(bfd->u.scfi, 2, j, len, ind, val); break; default: xassert(bfd != bfd); } #if 1 /* FIXME */ switch (ret) { case 0: break; case 1: ret = BFD_ELIMIT; break; case 2: ret = BFD_ECOND; break; default: xassert(ret != ret); } #endif break; default: xassert(bfd != bfd); } if (ret != 0) { /* updating factorization failed */ bfd->valid = 0; } #ifdef GLP_DEBUG /* save updated LP basis */ { SPME *e; int k; for (e = bfd->B->col[j]; e != NULL; e = e->c_next) e->val = 0.0; spm_drop_zeros(bfd->B, 0.0); for (k = 1; k <= len; k++) spm_new_elem(bfd->B, ind[k], j, val[k]); } #endif if (ret == 0) bfd->upd_cnt++; return ret; } int bfd_get_count(BFD *bfd) { /* determine factorization update count */ return bfd->upd_cnt; } void bfd_delete_it(BFD *bfd) { /* delete LP basis factorization */ switch (bfd->type) { case 0: break; case 1: fhvint_delete(bfd->u.fhvi); break; case 2: scfint_delete(bfd->u.scfi); break; default: xassert(bfd != bfd); } #ifdef GLP_DEBUG if (bfd->B != NULL) spm_delete_mat(bfd->B); #endif tfree(bfd); return; } /* eof */