/* glpapi07.c (exact simplex solver) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2007-2017 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "draft.h" #include "glpssx.h" #include "misc.h" #include "prob.h" /*********************************************************************** * NAME * * glp_exact - solve LP problem in exact arithmetic * * SYNOPSIS * * int glp_exact(glp_prob *lp, const glp_smcp *parm); * * DESCRIPTION * * The routine glp_exact is a tentative implementation of the primal * two-phase simplex method based on exact (rational) arithmetic. It is * similar to the routine glp_simplex, however, for all internal * computations it uses arithmetic of rational numbers, which is exact * in mathematical sense, i.e. free of round-off errors unlike floating * point arithmetic. * * Note that the routine glp_exact uses inly two control parameters * passed in the structure glp_smcp, namely, it_lim and tm_lim. * * RETURNS * * 0 The LP problem instance has been successfully solved. This code * does not necessarily mean that the solver has found optimal * solution. It only means that the solution process was successful. * * GLP_EBADB * Unable to start the search, because the initial basis specified * in the problem object is invalid--the number of basic (auxiliary * and structural) variables is not the same as the number of rows in * the problem object. * * GLP_ESING * Unable to start the search, because the basis matrix correspodning * to the initial basis is exactly singular. * * GLP_EBOUND * Unable to start the search, because some double-bounded variables * have incorrect bounds. * * GLP_EFAIL * The problem has no rows/columns. * * GLP_EITLIM * The search was prematurely terminated, because the simplex * iteration limit has been exceeded. * * GLP_ETMLIM * The search was prematurely terminated, because the time limit has * been exceeded. */ static void set_d_eps(mpq_t x, double val) { /* convert double val to rational x obtaining a more adequate fraction than provided by mpq_set_d due to allowing a small approximation error specified by a given relative tolerance; for example, mpq_set_d would give the following 1/3 ~= 0.333333333333333314829616256247391... -> -> 6004799503160661/18014398509481984 while this routine gives exactly 1/3 */ int s, n, j; double f, p, q, eps = 1e-9; mpq_t temp; xassert(-DBL_MAX <= val && val <= +DBL_MAX); #if 1 /* 30/VII-2008 */ if (val == floor(val)) { /* if val is integral, do not approximate */ mpq_set_d(x, val); goto done; } #endif if (val > 0.0) s = +1; else if (val < 0.0) s = -1; else { mpq_set_si(x, 0, 1); goto done; } f = frexp(fabs(val), &n); /* |val| = f * 2^n, where 0.5 <= f < 1.0 */ fp2rat(f, 0.1 * eps, &p, &q); /* f ~= p / q, where p and q are integers */ mpq_init(temp); mpq_set_d(x, p); mpq_set_d(temp, q); mpq_div(x, x, temp); mpq_set_si(temp, 1, 1); for (j = 1; j <= abs(n); j++) mpq_add(temp, temp, temp); if (n > 0) mpq_mul(x, x, temp); else if (n < 0) mpq_div(x, x, temp); mpq_clear(temp); if (s < 0) mpq_neg(x, x); /* check that the desired tolerance has been attained */ xassert(fabs(val - mpq_get_d(x)) <= eps * (1.0 + fabs(val))); done: return; } static void load_data(SSX *ssx, glp_prob *lp) { /* load LP problem data into simplex solver workspace */ int m = ssx->m; int n = ssx->n; int nnz = ssx->A_ptr[n+1]-1; int j, k, type, loc, len, *ind; double lb, ub, coef, *val; xassert(lp->m == m); xassert(lp->n == n); xassert(lp->nnz == nnz); /* types and bounds of rows and columns */ for (k = 1; k <= m+n; k++) { if (k <= m) { type = lp->row[k]->type; lb = lp->row[k]->lb; ub = lp->row[k]->ub; } else { type = lp->col[k-m]->type; lb = lp->col[k-m]->lb; ub = lp->col[k-m]->ub; } switch (type) { case GLP_FR: type = SSX_FR; break; case GLP_LO: type = SSX_LO; break; case GLP_UP: type = SSX_UP; break; case GLP_DB: type = SSX_DB; break; case GLP_FX: type = SSX_FX; break; default: xassert(type != type); } ssx->type[k] = type; set_d_eps(ssx->lb[k], lb); set_d_eps(ssx->ub[k], ub); } /* optimization direction */ switch (lp->dir) { case GLP_MIN: ssx->dir = SSX_MIN; break; case GLP_MAX: ssx->dir = SSX_MAX; break; default: xassert(lp != lp); } /* objective coefficients */ for (k = 0; k <= m+n; k++) { if (k == 0) coef = lp->c0; else if (k <= m) coef = 0.0; else coef = lp->col[k-m]->coef; set_d_eps(ssx->coef[k], coef); } /* constraint coefficients */ ind = xcalloc(1+m, sizeof(int)); val = xcalloc(1+m, sizeof(double)); loc = 0; for (j = 1; j <= n; j++) { ssx->A_ptr[j] = loc+1; len = glp_get_mat_col(lp, j, ind, val); for (k = 1; k <= len; k++) { loc++; ssx->A_ind[loc] = ind[k]; set_d_eps(ssx->A_val[loc], val[k]); } } xassert(loc == nnz); xfree(ind); xfree(val); return; } static int load_basis(SSX *ssx, glp_prob *lp) { /* load current LP basis into simplex solver workspace */ int m = ssx->m; int n = ssx->n; int *type = ssx->type; int *stat = ssx->stat; int *Q_row = ssx->Q_row; int *Q_col = ssx->Q_col; int i, j, k; xassert(lp->m == m); xassert(lp->n == n); /* statuses of rows and columns */ for (k = 1; k <= m+n; k++) { if (k <= m) stat[k] = lp->row[k]->stat; else stat[k] = lp->col[k-m]->stat; switch (stat[k]) { case GLP_BS: stat[k] = SSX_BS; break; case GLP_NL: stat[k] = SSX_NL; xassert(type[k] == SSX_LO || type[k] == SSX_DB); break; case GLP_NU: stat[k] = SSX_NU; xassert(type[k] == SSX_UP || type[k] == SSX_DB); break; case GLP_NF: stat[k] = SSX_NF; xassert(type[k] == SSX_FR); break; case GLP_NS: stat[k] = SSX_NS; xassert(type[k] == SSX_FX); break; default: xassert(stat != stat); } } /* build permutation matix Q */ i = j = 0; for (k = 1; k <= m+n; k++) { if (stat[k] == SSX_BS) { i++; if (i > m) return 1; Q_row[k] = i, Q_col[i] = k; } else { j++; if (j > n) return 1; Q_row[k] = m+j, Q_col[m+j] = k; } } xassert(i == m && j == n); return 0; } int glp_exact(glp_prob *lp, const glp_smcp *parm) { glp_smcp _parm; SSX *ssx; int m = lp->m; int n = lp->n; int nnz = lp->nnz; int i, j, k, type, pst, dst, ret, stat; double lb, ub, prim, dual, sum; if (parm == NULL) parm = &_parm, glp_init_smcp((glp_smcp *)parm); /* check control parameters */ #if 1 /* 25/XI-2017 */ switch (parm->msg_lev) { case GLP_MSG_OFF: case GLP_MSG_ERR: case GLP_MSG_ON: case GLP_MSG_ALL: case GLP_MSG_DBG: break; default: xerror("glp_exact: msg_lev = %d; invalid parameter\n", parm->msg_lev); } #endif if (parm->it_lim < 0) xerror("glp_exact: it_lim = %d; invalid parameter\n", parm->it_lim); if (parm->tm_lim < 0) xerror("glp_exact: tm_lim = %d; invalid parameter\n", parm->tm_lim); /* the problem must have at least one row and one column */ if (!(m > 0 && n > 0)) #if 0 /* 25/XI-2017 */ { xprintf("glp_exact: problem has no rows/columns\n"); #else { if (parm->msg_lev >= GLP_MSG_ERR) xprintf("glp_exact: problem has no rows/columns\n"); #endif return GLP_EFAIL; } #if 1 /* basic solution is currently undefined */ lp->pbs_stat = lp->dbs_stat = GLP_UNDEF; lp->obj_val = 0.0; lp->some = 0; #endif /* check that all double-bounded variables have correct bounds */ for (k = 1; k <= m+n; k++) { if (k <= m) { type = lp->row[k]->type; lb = lp->row[k]->lb; ub = lp->row[k]->ub; } else { type = lp->col[k-m]->type; lb = lp->col[k-m]->lb; ub = lp->col[k-m]->ub; } if (type == GLP_DB && lb >= ub) #if 0 /* 25/XI-2017 */ { xprintf("glp_exact: %s %d has invalid bounds\n", k <= m ? "row" : "column", k <= m ? k : k-m); #else { if (parm->msg_lev >= GLP_MSG_ERR) xprintf("glp_exact: %s %d has invalid bounds\n", k <= m ? "row" : "column", k <= m ? k : k-m); #endif return GLP_EBOUND; } } /* create the simplex solver workspace */ #if 1 /* 25/XI-2017 */ if (parm->msg_lev >= GLP_MSG_ALL) { #endif xprintf("glp_exact: %d rows, %d columns, %d non-zeros\n", m, n, nnz); #ifdef HAVE_GMP xprintf("GNU MP bignum library is being used\n"); #else xprintf("GLPK bignum module is being used\n"); xprintf("(Consider installing GNU MP to attain a much better perf" "ormance.)\n"); #endif #if 1 /* 25/XI-2017 */ } #endif ssx = ssx_create(m, n, nnz); /* load LP problem data into the workspace */ load_data(ssx, lp); /* load current LP basis into the workspace */ if (load_basis(ssx, lp)) #if 0 /* 25/XI-2017 */ { xprintf("glp_exact: initial LP basis is invalid\n"); #else { if (parm->msg_lev >= GLP_MSG_ERR) xprintf("glp_exact: initial LP basis is invalid\n"); #endif ret = GLP_EBADB; goto done; } #if 0 /* inherit some control parameters from the LP object */ ssx->it_lim = lpx_get_int_parm(lp, LPX_K_ITLIM); ssx->it_cnt = lpx_get_int_parm(lp, LPX_K_ITCNT); ssx->tm_lim = lpx_get_real_parm(lp, LPX_K_TMLIM); #else #if 1 /* 25/XI-2017 */ ssx->msg_lev = parm->msg_lev; #endif ssx->it_lim = parm->it_lim; ssx->it_cnt = lp->it_cnt; ssx->tm_lim = (double)parm->tm_lim / 1000.0; #endif ssx->out_frq = 5.0; ssx->tm_beg = xtime(); #if 0 /* 10/VI-2013 */ ssx->tm_lag = xlset(0); #else ssx->tm_lag = 0.0; #endif /* solve LP */ ret = ssx_driver(ssx); #if 0 /* copy back some statistics to the LP object */ lpx_set_int_parm(lp, LPX_K_ITLIM, ssx->it_lim); lpx_set_int_parm(lp, LPX_K_ITCNT, ssx->it_cnt); lpx_set_real_parm(lp, LPX_K_TMLIM, ssx->tm_lim); #else lp->it_cnt = ssx->it_cnt; #endif /* analyze the return code */ switch (ret) { case 0: /* optimal solution found */ ret = 0; pst = dst = GLP_FEAS; break; case 1: /* problem has no feasible solution */ ret = 0; pst = GLP_NOFEAS, dst = GLP_INFEAS; break; case 2: /* problem has unbounded solution */ ret = 0; pst = GLP_FEAS, dst = GLP_NOFEAS; #if 1 xassert(1 <= ssx->q && ssx->q <= n); lp->some = ssx->Q_col[m + ssx->q]; xassert(1 <= lp->some && lp->some <= m+n); #endif break; case 3: /* iteration limit exceeded (phase I) */ ret = GLP_EITLIM; pst = dst = GLP_INFEAS; break; case 4: /* iteration limit exceeded (phase II) */ ret = GLP_EITLIM; pst = GLP_FEAS, dst = GLP_INFEAS; break; case 5: /* time limit exceeded (phase I) */ ret = GLP_ETMLIM; pst = dst = GLP_INFEAS; break; case 6: /* time limit exceeded (phase II) */ ret = GLP_ETMLIM; pst = GLP_FEAS, dst = GLP_INFEAS; break; case 7: /* initial basis matrix is singular */ ret = GLP_ESING; goto done; default: xassert(ret != ret); } /* store final basic solution components into LP object */ lp->pbs_stat = pst; lp->dbs_stat = dst; sum = lp->c0; for (k = 1; k <= m+n; k++) { if (ssx->stat[k] == SSX_BS) { i = ssx->Q_row[k]; /* x[k] = xB[i] */ xassert(1 <= i && i <= m); stat = GLP_BS; prim = mpq_get_d(ssx->bbar[i]); dual = 0.0; } else { j = ssx->Q_row[k] - m; /* x[k] = xN[j] */ xassert(1 <= j && j <= n); switch (ssx->stat[k]) { case SSX_NF: stat = GLP_NF; prim = 0.0; break; case SSX_NL: stat = GLP_NL; prim = mpq_get_d(ssx->lb[k]); break; case SSX_NU: stat = GLP_NU; prim = mpq_get_d(ssx->ub[k]); break; case SSX_NS: stat = GLP_NS; prim = mpq_get_d(ssx->lb[k]); break; default: xassert(ssx != ssx); } dual = mpq_get_d(ssx->cbar[j]); } if (k <= m) { glp_set_row_stat(lp, k, stat); lp->row[k]->prim = prim; lp->row[k]->dual = dual; } else { glp_set_col_stat(lp, k-m, stat); lp->col[k-m]->prim = prim; lp->col[k-m]->dual = dual; sum += lp->col[k-m]->coef * prim; } } lp->obj_val = sum; done: /* delete the simplex solver workspace */ ssx_delete(ssx); #if 1 /* 23/XI-2015 */ xassert(gmp_pool_count() == 0); gmp_free_mem(); #endif /* return to the application program */ return ret; } /* eof */