/* glpios03.c (branch-and-cut driver) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2005-2018 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "ios.h" /*********************************************************************** * show_progress - display current progress of the search * * This routine displays some information about current progress of the * search. * * The information includes: * * the current number of iterations performed by the simplex solver; * * the objective value for the best known integer feasible solution, * which is upper (minimization) or lower (maximization) global bound * for optimal solution of the original mip problem; * * the best local bound for active nodes, which is lower (minimization) * or upper (maximization) global bound for optimal solution of the * original mip problem; * * the relative mip gap, in percents; * * the number of open (active) subproblems; * * the number of completely explored subproblems, i.e. whose nodes have * been removed from the tree. */ static void show_progress(glp_tree *T, int bingo) { int p; double temp; char best_mip[50], best_bound[50], *rho, rel_gap[50]; /* format the best known integer feasible solution */ if (T->mip->mip_stat == GLP_FEAS) sprintf(best_mip, "%17.9e", T->mip->mip_obj); else sprintf(best_mip, "%17s", "not found yet"); /* determine reference number of an active subproblem whose local bound is best */ p = ios_best_node(T); /* format the best bound */ if (p == 0) sprintf(best_bound, "%17s", "tree is empty"); else { temp = T->slot[p].node->bound; if (temp == -DBL_MAX) sprintf(best_bound, "%17s", "-inf"); else if (temp == +DBL_MAX) sprintf(best_bound, "%17s", "+inf"); else { if (fabs(temp) < 1e-9) temp = 0; sprintf(best_bound, "%17.9e", temp); } } /* choose the relation sign between global bounds */ if (T->mip->dir == GLP_MIN) rho = ">="; else if (T->mip->dir == GLP_MAX) rho = "<="; else xassert(T != T); /* format the relative mip gap */ temp = ios_relative_gap(T); if (temp == 0.0) sprintf(rel_gap, " 0.0%%"); else if (temp < 0.001) sprintf(rel_gap, "< 0.1%%"); else if (temp <= 9.999) sprintf(rel_gap, "%5.1f%%", 100.0 * temp); else sprintf(rel_gap, "%6s", ""); /* display progress of the search */ xprintf("+%6d: %s %s %s %s %s (%d; %d)\n", T->mip->it_cnt, bingo ? ">>>>>" : "mip =", best_mip, rho, best_bound, rel_gap, T->a_cnt, T->t_cnt - T->n_cnt); T->tm_lag = xtime(); return; } /*********************************************************************** * is_branch_hopeful - check if specified branch is hopeful * * This routine checks if the specified subproblem can have an integer * optimal solution which is better than the best known one. * * The check is based on comparison of the local objective bound stored * in the subproblem descriptor and the incumbent objective value which * is the global objective bound. * * If there is a chance that the specified subproblem can have a better * integer optimal solution, the routine returns non-zero. Otherwise, if * the corresponding branch can pruned, zero is returned. */ static int is_branch_hopeful(glp_tree *T, int p) { xassert(1 <= p && p <= T->nslots); xassert(T->slot[p].node != NULL); return ios_is_hopeful(T, T->slot[p].node->bound); } /*********************************************************************** * check_integrality - check integrality of basic solution * * This routine checks if the basic solution of LP relaxation of the * current subproblem satisfies to integrality conditions, i.e. that all * variables of integer kind have integral primal values. (The solution * is assumed to be optimal.) * * For each variable of integer kind the routine computes the following * quantity: * * ii(x[j]) = min(x[j] - floor(x[j]), ceil(x[j]) - x[j]), (1) * * which is a measure of the integer infeasibility (non-integrality) of * x[j] (for example, ii(2.1) = 0.1, ii(3.7) = 0.3, ii(5.0) = 0). It is * understood that 0 <= ii(x[j]) <= 0.5, and variable x[j] is integer * feasible if ii(x[j]) = 0. However, due to floating-point arithmetic * the routine checks less restrictive condition: * * ii(x[j]) <= tol_int, (2) * * where tol_int is a given tolerance (small positive number) and marks * each variable which does not satisfy to (2) as integer infeasible by * setting its fractionality flag. * * In order to characterize integer infeasibility of the basic solution * in the whole the routine computes two parameters: ii_cnt, which is * the number of variables with the fractionality flag set, and ii_sum, * which is the sum of integer infeasibilities (1). */ static void check_integrality(glp_tree *T) { glp_prob *mip = T->mip; int j, type, ii_cnt = 0; double lb, ub, x, temp1, temp2, ii_sum = 0.0; /* walk through the set of columns (structural variables) */ for (j = 1; j <= mip->n; j++) { GLPCOL *col = mip->col[j]; T->non_int[j] = 0; /* if the column is not integer, skip it */ if (col->kind != GLP_IV) continue; /* if the column is non-basic, it is integer feasible */ if (col->stat != GLP_BS) continue; /* obtain the type and bounds of the column */ type = col->type, lb = col->lb, ub = col->ub; /* obtain value of the column in optimal basic solution */ x = col->prim; /* if the column's primal value is close to the lower bound, the column is integer feasible within given tolerance */ if (type == GLP_LO || type == GLP_DB || type == GLP_FX) { temp1 = lb - T->parm->tol_int; temp2 = lb + T->parm->tol_int; if (temp1 <= x && x <= temp2) continue; #if 0 /* the lower bound must not be violated */ xassert(x >= lb); #else if (x < lb) continue; #endif } /* if the column's primal value is close to the upper bound, the column is integer feasible within given tolerance */ if (type == GLP_UP || type == GLP_DB || type == GLP_FX) { temp1 = ub - T->parm->tol_int; temp2 = ub + T->parm->tol_int; if (temp1 <= x && x <= temp2) continue; #if 0 /* the upper bound must not be violated */ xassert(x <= ub); #else if (x > ub) continue; #endif } /* if the column's primal value is close to nearest integer, the column is integer feasible within given tolerance */ temp1 = floor(x + 0.5) - T->parm->tol_int; temp2 = floor(x + 0.5) + T->parm->tol_int; if (temp1 <= x && x <= temp2) continue; /* otherwise the column is integer infeasible */ T->non_int[j] = 1; /* increase the number of fractional-valued columns */ ii_cnt++; /* compute the sum of integer infeasibilities */ temp1 = x - floor(x); temp2 = ceil(x) - x; xassert(temp1 > 0.0 && temp2 > 0.0); ii_sum += (temp1 <= temp2 ? temp1 : temp2); } /* store ii_cnt and ii_sum to the current problem descriptor */ xassert(T->curr != NULL); T->curr->ii_cnt = ii_cnt; T->curr->ii_sum = ii_sum; /* and also display these parameters */ if (T->parm->msg_lev >= GLP_MSG_DBG) { if (ii_cnt == 0) xprintf("There are no fractional columns\n"); else if (ii_cnt == 1) xprintf("There is one fractional column, integer infeasibil" "ity is %.3e\n", ii_sum); else xprintf("There are %d fractional columns, integer infeasibi" "lity is %.3e\n", ii_cnt, ii_sum); } return; } /*********************************************************************** * record_solution - record better integer feasible solution * * This routine records optimal basic solution of LP relaxation of the * current subproblem, which being integer feasible is better than the * best known integer feasible solution. */ static void record_solution(glp_tree *T) { glp_prob *mip = T->mip; int i, j; mip->mip_stat = GLP_FEAS; mip->mip_obj = mip->obj_val; for (i = 1; i <= mip->m; i++) { GLPROW *row = mip->row[i]; row->mipx = row->prim; } for (j = 1; j <= mip->n; j++) { GLPCOL *col = mip->col[j]; if (col->kind == GLP_CV) col->mipx = col->prim; else if (col->kind == GLP_IV) { /* value of the integer column must be integral */ col->mipx = floor(col->prim + 0.5); } else xassert(col != col); } T->sol_cnt++; return; } /*********************************************************************** * fix_by_red_cost - fix non-basic integer columns by reduced costs * * This routine fixes some non-basic integer columns if their reduced * costs indicate that increasing (decreasing) the column at least by * one involves the objective value becoming worse than the incumbent * objective value. */ static void fix_by_red_cost(glp_tree *T) { glp_prob *mip = T->mip; int j, stat, fixed = 0; double obj, lb, ub, dj; /* the global bound must exist */ xassert(T->mip->mip_stat == GLP_FEAS); /* basic solution of LP relaxation must be optimal */ xassert(mip->pbs_stat == GLP_FEAS && mip->dbs_stat == GLP_FEAS); /* determine the objective function value */ obj = mip->obj_val; /* walk through the column list */ for (j = 1; j <= mip->n; j++) { GLPCOL *col = mip->col[j]; /* if the column is not integer, skip it */ if (col->kind != GLP_IV) continue; /* obtain bounds of j-th column */ lb = col->lb, ub = col->ub; /* and determine its status and reduced cost */ stat = col->stat, dj = col->dual; /* analyze the reduced cost */ switch (mip->dir) { case GLP_MIN: /* minimization */ if (stat == GLP_NL) { /* j-th column is non-basic on its lower bound */ if (dj < 0.0) dj = 0.0; if (obj + dj >= mip->mip_obj) glp_set_col_bnds(mip, j, GLP_FX, lb, lb), fixed++; } else if (stat == GLP_NU) { /* j-th column is non-basic on its upper bound */ if (dj > 0.0) dj = 0.0; if (obj - dj >= mip->mip_obj) glp_set_col_bnds(mip, j, GLP_FX, ub, ub), fixed++; } break; case GLP_MAX: /* maximization */ if (stat == GLP_NL) { /* j-th column is non-basic on its lower bound */ if (dj > 0.0) dj = 0.0; if (obj + dj <= mip->mip_obj) glp_set_col_bnds(mip, j, GLP_FX, lb, lb), fixed++; } else if (stat == GLP_NU) { /* j-th column is non-basic on its upper bound */ if (dj < 0.0) dj = 0.0; if (obj - dj <= mip->mip_obj) glp_set_col_bnds(mip, j, GLP_FX, ub, ub), fixed++; } break; default: xassert(T != T); } } if (T->parm->msg_lev >= GLP_MSG_DBG) { if (fixed == 0) /* nothing to say */; else if (fixed == 1) xprintf("One column has been fixed by reduced cost\n"); else xprintf("%d columns have been fixed by reduced costs\n", fixed); } /* fixing non-basic columns on their current bounds does not change the basic solution */ xassert(mip->pbs_stat == GLP_FEAS && mip->dbs_stat == GLP_FEAS); return; } /*********************************************************************** * branch_on - perform branching on specified variable * * This routine performs branching on j-th column (structural variable) * of the current subproblem. The specified column must be of integer * kind and must have a fractional value in optimal basic solution of * LP relaxation of the current subproblem (i.e. only columns for which * the flag non_int[j] is set are valid candidates to branch on). * * Let x be j-th structural variable, and beta be its primal fractional * value in the current basic solution. Branching on j-th variable is * dividing the current subproblem into two new subproblems, which are * identical to the current subproblem with the following exception: in * the first subproblem that begins the down-branch x has a new upper * bound x <= floor(beta), and in the second subproblem that begins the * up-branch x has a new lower bound x >= ceil(beta). * * Depending on estimation of local bounds for down- and up-branches * this routine returns the following: * * 0 - both branches have been created; * 1 - one branch is hopeless and has been pruned, so now the current * subproblem is other branch; * 2 - both branches are hopeless and have been pruned; new subproblem * selection is needed to continue the search. */ static int branch_on(glp_tree *T, int j, int next) { glp_prob *mip = T->mip; IOSNPD *node; int m = mip->m; int n = mip->n; int type, dn_type, up_type, dn_bad, up_bad, p, ret, clone[1+2]; double lb, ub, beta, new_ub, new_lb, dn_lp, up_lp, dn_bnd, up_bnd; /* determine bounds and value of x[j] in optimal solution to LP relaxation of the current subproblem */ xassert(1 <= j && j <= n); type = mip->col[j]->type; lb = mip->col[j]->lb; ub = mip->col[j]->ub; beta = mip->col[j]->prim; /* determine new bounds of x[j] for down- and up-branches */ new_ub = floor(beta); new_lb = ceil(beta); switch (type) { case GLP_FR: dn_type = GLP_UP; up_type = GLP_LO; break; case GLP_LO: xassert(lb <= new_ub); dn_type = (lb == new_ub ? GLP_FX : GLP_DB); xassert(lb + 1.0 <= new_lb); up_type = GLP_LO; break; case GLP_UP: xassert(new_ub <= ub - 1.0); dn_type = GLP_UP; xassert(new_lb <= ub); up_type = (new_lb == ub ? GLP_FX : GLP_DB); break; case GLP_DB: xassert(lb <= new_ub && new_ub <= ub - 1.0); dn_type = (lb == new_ub ? GLP_FX : GLP_DB); xassert(lb + 1.0 <= new_lb && new_lb <= ub); up_type = (new_lb == ub ? GLP_FX : GLP_DB); break; default: xassert(type != type); } /* compute local bounds to LP relaxation for both branches */ ios_eval_degrad(T, j, &dn_lp, &up_lp); /* and improve them by rounding */ dn_bnd = ios_round_bound(T, dn_lp); up_bnd = ios_round_bound(T, up_lp); /* check local bounds for down- and up-branches */ dn_bad = !ios_is_hopeful(T, dn_bnd); up_bad = !ios_is_hopeful(T, up_bnd); if (dn_bad && up_bad) { if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Both down- and up-branches are hopeless\n"); ret = 2; goto done; } else if (up_bad) { if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Up-branch is hopeless\n"); glp_set_col_bnds(mip, j, dn_type, lb, new_ub); T->curr->lp_obj = dn_lp; if (mip->dir == GLP_MIN) { if (T->curr->bound < dn_bnd) T->curr->bound = dn_bnd; } else if (mip->dir == GLP_MAX) { if (T->curr->bound > dn_bnd) T->curr->bound = dn_bnd; } else xassert(mip != mip); ret = 1; goto done; } else if (dn_bad) { if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Down-branch is hopeless\n"); glp_set_col_bnds(mip, j, up_type, new_lb, ub); T->curr->lp_obj = up_lp; if (mip->dir == GLP_MIN) { if (T->curr->bound < up_bnd) T->curr->bound = up_bnd; } else if (mip->dir == GLP_MAX) { if (T->curr->bound > up_bnd) T->curr->bound = up_bnd; } else xassert(mip != mip); ret = 1; goto done; } /* both down- and up-branches seem to be hopeful */ if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Branching on column %d, primal value is %.9e\n", j, beta); /* determine the reference number of the current subproblem */ xassert(T->curr != NULL); p = T->curr->p; T->curr->br_var = j; T->curr->br_val = beta; /* freeze the current subproblem */ ios_freeze_node(T); /* create two clones of the current subproblem; the first clone begins the down-branch, the second one begins the up-branch */ ios_clone_node(T, p, 2, clone); if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Node %d begins down branch, node %d begins up branch " "\n", clone[1], clone[2]); /* set new upper bound of j-th column in the down-branch */ node = T->slot[clone[1]].node; xassert(node != NULL); xassert(node->up != NULL); xassert(node->b_ptr == NULL); node->b_ptr = dmp_get_atom(T->pool, sizeof(IOSBND)); node->b_ptr->k = m + j; node->b_ptr->type = (unsigned char)dn_type; node->b_ptr->lb = lb; node->b_ptr->ub = new_ub; node->b_ptr->next = NULL; node->lp_obj = dn_lp; if (mip->dir == GLP_MIN) { if (node->bound < dn_bnd) node->bound = dn_bnd; } else if (mip->dir == GLP_MAX) { if (node->bound > dn_bnd) node->bound = dn_bnd; } else xassert(mip != mip); /* set new lower bound of j-th column in the up-branch */ node = T->slot[clone[2]].node; xassert(node != NULL); xassert(node->up != NULL); xassert(node->b_ptr == NULL); node->b_ptr = dmp_get_atom(T->pool, sizeof(IOSBND)); node->b_ptr->k = m + j; node->b_ptr->type = (unsigned char)up_type; node->b_ptr->lb = new_lb; node->b_ptr->ub = ub; node->b_ptr->next = NULL; node->lp_obj = up_lp; if (mip->dir == GLP_MIN) { if (node->bound < up_bnd) node->bound = up_bnd; } else if (mip->dir == GLP_MAX) { if (node->bound > up_bnd) node->bound = up_bnd; } else xassert(mip != mip); /* suggest the subproblem to be solved next */ xassert(T->child == 0); if (next == GLP_NO_BRNCH) T->child = 0; else if (next == GLP_DN_BRNCH) T->child = clone[1]; else if (next == GLP_UP_BRNCH) T->child = clone[2]; else xassert(next != next); ret = 0; done: return ret; } /*********************************************************************** * cleanup_the_tree - prune hopeless branches from the tree * * This routine walks through the active list and checks the local * bound for every active subproblem. If the local bound indicates that * the subproblem cannot have integer optimal solution better than the * incumbent objective value, the routine deletes such subproblem that, * in turn, involves pruning the corresponding branch of the tree. */ static void cleanup_the_tree(glp_tree *T) { IOSNPD *node, *next_node; int count = 0; /* the global bound must exist */ xassert(T->mip->mip_stat == GLP_FEAS); /* walk through the list of active subproblems */ for (node = T->head; node != NULL; node = next_node) { /* deleting some active problem node may involve deleting its parents recursively; however, all its parents being created *before* it are always *precede* it in the node list, so the next problem node is never affected by such deletion */ next_node = node->next; /* if the branch is hopeless, prune it */ if (!is_branch_hopeful(T, node->p)) ios_delete_node(T, node->p), count++; } if (T->parm->msg_lev >= GLP_MSG_DBG) { if (count == 1) xprintf("One hopeless branch has been pruned\n"); else if (count > 1) xprintf("%d hopeless branches have been pruned\n", count); } return; } /*********************************************************************** * round_heur - simple rounding heuristic * * This routine attempts to guess an integer feasible solution by * simple rounding values of all integer variables in basic solution to * nearest integers. */ static int round_heur(glp_tree *T) { glp_prob *P = T->mip; /*int m = P->m;*/ int n = P->n; int i, j, ret; double *x; /* compute rounded values of variables */ x = talloc(1+n, double); for (j = 1; j <= n; j++) { GLPCOL *col = P->col[j]; if (col->kind == GLP_IV) { /* integer variable */ x[j] = floor(col->prim + 0.5); } else if (col->type == GLP_FX) { /* fixed variable */ x[j] = col->prim; } else { /* non-integer non-fixed variable */ ret = 3; goto done; } } /* check that no constraints are violated */ for (i = 1; i <= T->orig_m; i++) { int type = T->orig_type[i]; GLPAIJ *aij; double sum; if (type == GLP_FR) continue; /* compute value of linear form */ sum = 0.0; for (aij = P->row[i]->ptr; aij != NULL; aij = aij->r_next) sum += aij->val * x[aij->col->j]; /* check lower bound */ if (type == GLP_LO || type == GLP_DB || type == GLP_FX) { if (sum < T->orig_lb[i] - 1e-9) { /* lower bound is violated */ ret = 2; goto done; } } /* check upper bound */ if (type == GLP_UP || type == GLP_DB || type == GLP_FX) { if (sum > T->orig_ub[i] + 1e-9) { /* upper bound is violated */ ret = 2; goto done; } } } /* rounded solution is integer feasible */ if (glp_ios_heur_sol(T, x) == 0) { /* solution is accepted */ ret = 0; } else { /* solution is rejected */ ret = 1; } done: tfree(x); return ret; } /**********************************************************************/ #if 1 /* 08/III-2016 */ static void gmi_gen(glp_tree *T) { /* generate Gomory's mixed integer cuts */ glp_prob *P, *pool; P = T->mip; pool = glp_create_prob(); glp_add_cols(pool, P->n); glp_gmi_gen(P, pool, 50); if (pool->m > 0) { int i, len, *ind; double *val; ind = xcalloc(1+P->n, sizeof(int)); val = xcalloc(1+P->n, sizeof(double)); for (i = 1; i <= pool->m; i++) { len = glp_get_mat_row(pool, i, ind, val); glp_ios_add_row(T, NULL, GLP_RF_GMI, 0, len, ind, val, GLP_LO, pool->row[i]->lb); } xfree(ind); xfree(val); } glp_delete_prob(pool); return; } #endif #ifdef NEW_COVER /* 13/II-2018 */ static void cov_gen(glp_tree *T) { /* generate cover cuts */ glp_prob *P, *pool; if (T->cov_gen == NULL) return; P = T->mip; pool = glp_create_prob(); glp_add_cols(pool, P->n); glp_cov_gen1(P, T->cov_gen, pool); if (pool->m > 0) { int i, len, *ind; double *val; ind = xcalloc(1+P->n, sizeof(int)); val = xcalloc(1+P->n, sizeof(double)); for (i = 1; i <= pool->m; i++) { len = glp_get_mat_row(pool, i, ind, val); glp_ios_add_row(T, NULL, GLP_RF_COV, 0, len, ind, val, GLP_UP, pool->row[i]->ub); } xfree(ind); xfree(val); } glp_delete_prob(pool); return; } #endif #if 1 /* 08/III-2016 */ static void mir_gen(glp_tree *T) { /* generate mixed integer rounding cuts */ glp_prob *P, *pool; P = T->mip; pool = glp_create_prob(); glp_add_cols(pool, P->n); glp_mir_gen(P, T->mir_gen, pool); if (pool->m > 0) { int i, len, *ind; double *val; ind = xcalloc(1+P->n, sizeof(int)); val = xcalloc(1+P->n, sizeof(double)); for (i = 1; i <= pool->m; i++) { len = glp_get_mat_row(pool, i, ind, val); glp_ios_add_row(T, NULL, GLP_RF_MIR, 0, len, ind, val, GLP_UP, pool->row[i]->ub); } xfree(ind); xfree(val); } glp_delete_prob(pool); return; } #endif #if 1 /* 08/III-2016 */ static void clq_gen(glp_tree *T, glp_cfg *G) { /* generate clique cut from conflict graph */ glp_prob *P = T->mip; int n = P->n; int len, *ind; double *val; ind = talloc(1+n, int); val = talloc(1+n, double); len = glp_clq_cut(T->mip, G, ind, val); if (len > 0) glp_ios_add_row(T, NULL, GLP_RF_CLQ, 0, len, ind, val, GLP_UP, val[0]); tfree(ind); tfree(val); return; } #endif static void generate_cuts(glp_tree *T) { /* generate generic cuts with built-in generators */ if (!(T->parm->mir_cuts == GLP_ON || T->parm->gmi_cuts == GLP_ON || T->parm->cov_cuts == GLP_ON || T->parm->clq_cuts == GLP_ON)) goto done; #if 1 /* 20/IX-2008 */ { int i, max_cuts, added_cuts; max_cuts = T->n; if (max_cuts < 1000) max_cuts = 1000; added_cuts = 0; for (i = T->orig_m+1; i <= T->mip->m; i++) { if (T->mip->row[i]->origin == GLP_RF_CUT) added_cuts++; } /* xprintf("added_cuts = %d\n", added_cuts); */ if (added_cuts >= max_cuts) goto done; } #endif /* generate and add to POOL all cuts violated by x* */ if (T->parm->gmi_cuts == GLP_ON) { if (T->curr->changed < 7) #if 0 /* 08/III-2016 */ ios_gmi_gen(T); #else gmi_gen(T); #endif } if (T->parm->mir_cuts == GLP_ON) { xassert(T->mir_gen != NULL); #if 0 /* 08/III-2016 */ ios_mir_gen(T, T->mir_gen); #else mir_gen(T); #endif } if (T->parm->cov_cuts == GLP_ON) { /* cover cuts works well along with mir cuts */ #ifdef NEW_COVER /* 13/II-2018 */ cov_gen(T); #else ios_cov_gen(T); #endif } if (T->parm->clq_cuts == GLP_ON) { if (T->clq_gen != NULL) #if 0 /* 29/VI-2013 */ { if (T->curr->level == 0 && T->curr->changed < 50 || T->curr->level > 0 && T->curr->changed < 5) #else /* FIXME */ { if (T->curr->level == 0 && T->curr->changed < 500 || T->curr->level > 0 && T->curr->changed < 50) #endif #if 0 /* 08/III-2016 */ ios_clq_gen(T, T->clq_gen); #else clq_gen(T, T->clq_gen); #endif } } done: return; } /**********************************************************************/ static void remove_cuts(glp_tree *T) { /* remove inactive cuts (some valueable globally valid cut might be saved in the global cut pool) */ int i, cnt = 0, *num = NULL; xassert(T->curr != NULL); for (i = T->orig_m+1; i <= T->mip->m; i++) { if (T->mip->row[i]->origin == GLP_RF_CUT && T->mip->row[i]->level == T->curr->level && T->mip->row[i]->stat == GLP_BS) { if (num == NULL) num = xcalloc(1+T->mip->m, sizeof(int)); num[++cnt] = i; } } if (cnt > 0) { glp_del_rows(T->mip, cnt, num); #if 0 xprintf("%d inactive cut(s) removed\n", cnt); #endif xfree(num); xassert(glp_factorize(T->mip) == 0); } return; } /**********************************************************************/ static void display_cut_info(glp_tree *T) { glp_prob *mip = T->mip; int i, gmi = 0, mir = 0, cov = 0, clq = 0, app = 0; for (i = mip->m; i > 0; i--) { GLPROW *row; row = mip->row[i]; /* if (row->level < T->curr->level) break; */ if (row->origin == GLP_RF_CUT) { if (row->klass == GLP_RF_GMI) gmi++; else if (row->klass == GLP_RF_MIR) mir++; else if (row->klass == GLP_RF_COV) cov++; else if (row->klass == GLP_RF_CLQ) clq++; else app++; } } xassert(T->curr != NULL); if (gmi + mir + cov + clq + app > 0) { xprintf("Cuts on level %d:", T->curr->level); if (gmi > 0) xprintf(" gmi = %d;", gmi); if (mir > 0) xprintf(" mir = %d;", mir); if (cov > 0) xprintf(" cov = %d;", cov); if (clq > 0) xprintf(" clq = %d;", clq); if (app > 0) xprintf(" app = %d;", app); xprintf("\n"); } return; } /*********************************************************************** * NAME * * ios_driver - branch-and-cut driver * * SYNOPSIS * * #include "glpios.h" * int ios_driver(glp_tree *T); * * DESCRIPTION * * The routine ios_driver is a branch-and-cut driver. It controls the * MIP solution process. * * RETURNS * * 0 The MIP problem instance has been successfully solved. This code * does not necessarily mean that the solver has found optimal * solution. It only means that the solution process was successful. * * GLP_EFAIL * The search was prematurely terminated due to the solver failure. * * GLP_EMIPGAP * The search was prematurely terminated, because the relative mip * gap tolerance has been reached. * * GLP_ETMLIM * The search was prematurely terminated, because the time limit has * been exceeded. * * GLP_ESTOP * The search was prematurely terminated by application. */ int ios_driver(glp_tree *T) { int p, curr_p, p_stat, d_stat, ret; #if 1 /* carry out to glp_tree */ int pred_p = 0; /* if the current subproblem has been just created due to branching, pred_p is the reference number of its parent subproblem, otherwise pred_p is zero */ #endif #if 1 /* 18/VII-2013 */ int bad_cut; double old_obj; #endif #if 0 /* 10/VI-2013 */ glp_long ttt = T->tm_beg; #else double ttt = T->tm_beg; #endif #if 1 /* 27/II-2016 by Chris */ int root_done = 0; #endif #if 0 ((glp_iocp *)T->parm)->msg_lev = GLP_MSG_DBG; #endif #if 1 /* 01/III-2018 */ if (((glp_iocp *)T->parm)->flip) if (T->parm->msg_lev >= GLP_MSG_ALL) xprintf("Long-step dual simplex will be used\n"); #endif /* on entry to the B&B driver it is assumed that the active list contains the only active (i.e. root) subproblem, which is the original MIP problem to be solved */ loop: /* main loop starts here */ /* at this point the current subproblem does not exist */ xassert(T->curr == NULL); /* if the active list is empty, the search is finished */ if (T->head == NULL) { if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Active list is empty!\n"); #if 0 /* 10/VI-2013 */ xassert(dmp_in_use(T->pool).lo == 0); #else xassert(dmp_in_use(T->pool) == 0); #endif ret = 0; goto done; } /* select some active subproblem to continue the search */ xassert(T->next_p == 0); /* let the application program select subproblem */ if (T->parm->cb_func != NULL) { xassert(T->reason == 0); T->reason = GLP_ISELECT; T->parm->cb_func(T, T->parm->cb_info); T->reason = 0; if (T->stop) { ret = GLP_ESTOP; goto done; } } if (T->next_p != 0) { /* the application program has selected something */ ; } else if (T->a_cnt == 1) { /* the only active subproblem exists, so select it */ xassert(T->head->next == NULL); T->next_p = T->head->p; } else if (T->child != 0) { /* select one of branching childs suggested by the branching heuristic */ T->next_p = T->child; } else { /* select active subproblem as specified by the backtracking technique option */ T->next_p = ios_choose_node(T); } /* the active subproblem just selected becomes current */ ios_revive_node(T, T->next_p); T->next_p = T->child = 0; /* invalidate pred_p, if it is not the reference number of the parent of the current subproblem */ if (T->curr->up != NULL && T->curr->up->p != pred_p) pred_p = 0; /* determine the reference number of the current subproblem */ p = T->curr->p; if (T->parm->msg_lev >= GLP_MSG_DBG) { xprintf("-----------------------------------------------------" "-------------------\n"); xprintf("Processing node %d at level %d\n", p, T->curr->level); } #if 0 if (p == 1) glp_write_lp(T->mip, NULL, "root.lp"); #endif #if 1 /* 24/X-2015 */ if (p == 1) { if (T->parm->sr_heur == GLP_OFF) { if (T->parm->msg_lev >= GLP_MSG_ALL) xprintf("Simple rounding heuristic disabled\n"); } } #endif /* if it is the root subproblem, initialize cut generators */ if (p == 1) { if (T->parm->gmi_cuts == GLP_ON) { if (T->parm->msg_lev >= GLP_MSG_ALL) xprintf("Gomory's cuts enabled\n"); } if (T->parm->mir_cuts == GLP_ON) { if (T->parm->msg_lev >= GLP_MSG_ALL) xprintf("MIR cuts enabled\n"); xassert(T->mir_gen == NULL); #if 0 /* 06/III-2016 */ T->mir_gen = ios_mir_init(T); #else T->mir_gen = glp_mir_init(T->mip); #endif } if (T->parm->cov_cuts == GLP_ON) { if (T->parm->msg_lev >= GLP_MSG_ALL) xprintf("Cover cuts enabled\n"); #ifdef NEW_COVER /* 13/II-2018 */ xassert(T->cov_gen == NULL); T->cov_gen = glp_cov_init(T->mip); #endif } if (T->parm->clq_cuts == GLP_ON) { xassert(T->clq_gen == NULL); if (T->parm->msg_lev >= GLP_MSG_ALL) xprintf("Clique cuts enabled\n"); #if 0 /* 08/III-2016 */ T->clq_gen = ios_clq_init(T); #else T->clq_gen = glp_cfg_init(T->mip); #endif } } #if 1 /* 18/VII-2013 */ bad_cut = 0; #endif more: /* minor loop starts here */ /* at this point the current subproblem needs either to be solved for the first time or re-optimized due to reformulation */ /* display current progress of the search */ if (T->parm->msg_lev >= GLP_MSG_DBG || T->parm->msg_lev >= GLP_MSG_ON && (double)(T->parm->out_frq - 1) <= 1000.0 * xdifftime(xtime(), T->tm_lag)) show_progress(T, 0); if (T->parm->msg_lev >= GLP_MSG_ALL && xdifftime(xtime(), ttt) >= 60.0) #if 0 /* 16/II-2012 */ { glp_long total; glp_mem_usage(NULL, NULL, &total, NULL); xprintf("Time used: %.1f secs. Memory used: %.1f Mb.\n", xdifftime(xtime(), T->tm_beg), xltod(total) / 1048576.0); ttt = xtime(); } #else { size_t total; glp_mem_usage(NULL, NULL, &total, NULL); xprintf("Time used: %.1f secs. Memory used: %.1f Mb.\n", xdifftime(xtime(), T->tm_beg), (double)total / 1048576.0); ttt = xtime(); } #endif /* check the mip gap */ if (T->parm->mip_gap > 0.0 && ios_relative_gap(T) <= T->parm->mip_gap) { if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Relative gap tolerance reached; search terminated " "\n"); ret = GLP_EMIPGAP; goto done; } /* check if the time limit has been exhausted */ if (T->parm->tm_lim < INT_MAX && (double)(T->parm->tm_lim - 1) <= 1000.0 * xdifftime(xtime(), T->tm_beg)) { if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Time limit exhausted; search terminated\n"); ret = GLP_ETMLIM; goto done; } /* let the application program preprocess the subproblem */ if (T->parm->cb_func != NULL) { xassert(T->reason == 0); T->reason = GLP_IPREPRO; T->parm->cb_func(T, T->parm->cb_info); T->reason = 0; if (T->stop) { ret = GLP_ESTOP; goto done; } } /* perform basic preprocessing */ if (T->parm->pp_tech == GLP_PP_NONE) ; else if (T->parm->pp_tech == GLP_PP_ROOT) #if 0 /* 27/II-2016 by Chris */ { if (T->curr->level == 0) #else { if (!root_done) #endif { if (ios_preprocess_node(T, 100)) goto fath; } } else if (T->parm->pp_tech == GLP_PP_ALL) #if 0 /* 27/II-2016 by Chris */ { if (ios_preprocess_node(T, T->curr->level == 0 ? 100 : 10)) #else { if (ios_preprocess_node(T, !root_done ? 100 : 10)) #endif goto fath; } else xassert(T != T); /* preprocessing may improve the global bound */ if (!is_branch_hopeful(T, p)) { xprintf("*** not tested yet ***\n"); goto fath; } /* solve LP relaxation of the current subproblem */ if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Solving LP relaxation...\n"); ret = ios_solve_node(T); if (ret == GLP_ETMLIM) goto done; else if (!(ret == 0 || ret == GLP_EOBJLL || ret == GLP_EOBJUL)) { if (T->parm->msg_lev >= GLP_MSG_ERR) xprintf("ios_driver: unable to solve current LP relaxation;" " glp_simplex returned %d\n", ret); ret = GLP_EFAIL; goto done; } /* analyze status of the basic solution to LP relaxation found */ p_stat = T->mip->pbs_stat; d_stat = T->mip->dbs_stat; if (p_stat == GLP_FEAS && d_stat == GLP_FEAS) { /* LP relaxation has optimal solution */ if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Found optimal solution to LP relaxation\n"); } else if (d_stat == GLP_NOFEAS) { /* LP relaxation has no dual feasible solution */ /* since the current subproblem cannot have a larger feasible region than its parent, there is something wrong */ if (T->parm->msg_lev >= GLP_MSG_ERR) xprintf("ios_driver: current LP relaxation has no dual feas" "ible solution\n"); ret = GLP_EFAIL; goto done; } else if (p_stat == GLP_INFEAS && d_stat == GLP_FEAS) { /* LP relaxation has no primal solution which is better than the incumbent objective value */ xassert(T->mip->mip_stat == GLP_FEAS); if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("LP relaxation has no solution better than incumben" "t objective value\n"); /* prune the branch */ goto fath; } else if (p_stat == GLP_NOFEAS) { /* LP relaxation has no primal feasible solution */ if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("LP relaxation has no feasible solution\n"); /* prune the branch */ goto fath; } else { /* other cases cannot appear */ xassert(T->mip != T->mip); } /* at this point basic solution to LP relaxation of the current subproblem is optimal */ xassert(p_stat == GLP_FEAS && d_stat == GLP_FEAS); xassert(T->curr != NULL); T->curr->lp_obj = T->mip->obj_val; /* thus, it defines a local bound to integer optimal solution of the current subproblem */ { double bound = T->mip->obj_val; /* some local bound to the current subproblem could be already set before, so we should only improve it */ bound = ios_round_bound(T, bound); if (T->mip->dir == GLP_MIN) { if (T->curr->bound < bound) T->curr->bound = bound; } else if (T->mip->dir == GLP_MAX) { if (T->curr->bound > bound) T->curr->bound = bound; } else xassert(T->mip != T->mip); if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Local bound is %.9e\n", bound); } /* if the local bound indicates that integer optimal solution of the current subproblem cannot be better than the global bound, prune the branch */ if (!is_branch_hopeful(T, p)) { if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Current branch is hopeless and can be pruned\n"); goto fath; } /* let the application program generate additional rows ("lazy" constraints) */ xassert(T->reopt == 0); xassert(T->reinv == 0); if (T->parm->cb_func != NULL) { xassert(T->reason == 0); T->reason = GLP_IROWGEN; T->parm->cb_func(T, T->parm->cb_info); T->reason = 0; if (T->stop) { ret = GLP_ESTOP; goto done; } if (T->reopt) { /* some rows were added; re-optimization is needed */ T->reopt = T->reinv = 0; goto more; } if (T->reinv) { /* no rows were added, however, some inactive rows were removed */ T->reinv = 0; xassert(glp_factorize(T->mip) == 0); } } /* check if the basic solution is integer feasible */ check_integrality(T); /* if the basic solution satisfies to all integrality conditions, it is a new, better integer feasible solution */ if (T->curr->ii_cnt == 0) { if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("New integer feasible solution found\n"); if (T->parm->msg_lev >= GLP_MSG_ALL) display_cut_info(T); record_solution(T); if (T->parm->msg_lev >= GLP_MSG_ON) show_progress(T, 1); #if 1 /* 11/VII-2013 */ ios_process_sol(T); #endif /* make the application program happy */ if (T->parm->cb_func != NULL) { xassert(T->reason == 0); T->reason = GLP_IBINGO; T->parm->cb_func(T, T->parm->cb_info); T->reason = 0; if (T->stop) { ret = GLP_ESTOP; goto done; } } /* since the current subproblem has been fathomed, prune its branch */ goto fath; } /* at this point basic solution to LP relaxation of the current subproblem is optimal, but integer infeasible */ /* try to fix some non-basic structural variables of integer kind on their current bounds due to reduced costs */ if (T->mip->mip_stat == GLP_FEAS) fix_by_red_cost(T); /* let the application program try to find some solution to the original MIP with a primal heuristic */ if (T->parm->cb_func != NULL) { xassert(T->reason == 0); T->reason = GLP_IHEUR; T->parm->cb_func(T, T->parm->cb_info); T->reason = 0; if (T->stop) { ret = GLP_ESTOP; goto done; } /* check if the current branch became hopeless */ if (!is_branch_hopeful(T, p)) { if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Current branch became hopeless and can be prune" "d\n"); goto fath; } } /* try to find solution with the feasibility pump heuristic */ #if 0 /* 27/II-2016 by Chris */ if (T->parm->fp_heur) #else if (T->parm->fp_heur && !root_done) #endif { xassert(T->reason == 0); T->reason = GLP_IHEUR; ios_feas_pump(T); T->reason = 0; /* check if the current branch became hopeless */ if (!is_branch_hopeful(T, p)) { if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Current branch became hopeless and can be prune" "d\n"); goto fath; } } #if 1 /* 25/V-2013 */ /* try to find solution with the proximity search heuristic */ #if 0 /* 27/II-2016 by Chris */ if (T->parm->ps_heur) #else if (T->parm->ps_heur && !root_done) #endif { xassert(T->reason == 0); T->reason = GLP_IHEUR; ios_proxy_heur(T); T->reason = 0; /* check if the current branch became hopeless */ if (!is_branch_hopeful(T, p)) { if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Current branch became hopeless and can be prune" "d\n"); goto fath; } } #endif #if 1 /* 24/X-2015 */ /* try to find solution with a simple rounding heuristic */ if (T->parm->sr_heur) { xassert(T->reason == 0); T->reason = GLP_IHEUR; round_heur(T); T->reason = 0; /* check if the current branch became hopeless */ if (!is_branch_hopeful(T, p)) { if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Current branch became hopeless and can be prune" "d\n"); goto fath; } } #endif /* it's time to generate cutting planes */ xassert(T->local != NULL); #ifdef NEW_LOCAL /* 02/II-2018 */ xassert(T->local->m == 0); #else xassert(T->local->size == 0); #endif /* let the application program generate some cuts; note that it can add cuts either to the local cut pool or directly to the current subproblem */ if (T->parm->cb_func != NULL) { xassert(T->reason == 0); T->reason = GLP_ICUTGEN; T->parm->cb_func(T, T->parm->cb_info); T->reason = 0; if (T->stop) { ret = GLP_ESTOP; goto done; } } #if 1 /* 18/VII-2013 */ if (T->curr->changed > 0) { double degrad = fabs(T->curr->lp_obj - old_obj); if (degrad < 1e-4 * (1.0 + fabs(old_obj))) bad_cut++; else bad_cut = 0; } old_obj = T->curr->lp_obj; #if 0 /* 27/II-2016 by Chris */ if (bad_cut == 0 || (T->curr->level == 0 && bad_cut <= 3)) #else if (bad_cut == 0 || (!root_done && bad_cut <= 3)) #endif #endif /* try to generate generic cuts with built-in generators (as suggested by Prof. Fischetti et al. the built-in cuts are not generated at each branching node; an intense attempt of generating new cuts is only made at the root node, and then a moderate effort is spent after each backtracking step) */ #if 0 /* 27/II-2016 by Chris */ if (T->curr->level == 0 || pred_p == 0) #else if (!root_done || pred_p == 0) #endif { xassert(T->reason == 0); T->reason = GLP_ICUTGEN; generate_cuts(T); T->reason = 0; } /* if the local cut pool is not empty, select useful cuts and add them to the current subproblem */ #ifdef NEW_LOCAL /* 02/II-2018 */ if (T->local->m > 0) #else if (T->local->size > 0) #endif { xassert(T->reason == 0); T->reason = GLP_ICUTGEN; ios_process_cuts(T); T->reason = 0; } /* clear the local cut pool */ ios_clear_pool(T, T->local); /* perform re-optimization, if necessary */ if (T->reopt) { T->reopt = 0; T->curr->changed++; goto more; } /* no cuts were generated; remove inactive cuts */ remove_cuts(T); #if 0 /* 27/II-2016 by Chris */ if (T->parm->msg_lev >= GLP_MSG_ALL && T->curr->level == 0) #else if (T->parm->msg_lev >= GLP_MSG_ALL && !root_done) #endif display_cut_info(T); #if 1 /* 27/II-2016 by Chris */ /* the first node will not be treated as root any more */ if (!root_done) root_done = 1; #endif /* update history information used on pseudocost branching */ if (T->pcost != NULL) ios_pcost_update(T); /* it's time to perform branching */ xassert(T->br_var == 0); xassert(T->br_sel == 0); /* let the application program choose variable to branch on */ if (T->parm->cb_func != NULL) { xassert(T->reason == 0); xassert(T->br_var == 0); xassert(T->br_sel == 0); T->reason = GLP_IBRANCH; T->parm->cb_func(T, T->parm->cb_info); T->reason = 0; if (T->stop) { ret = GLP_ESTOP; goto done; } } /* if nothing has been chosen, choose some variable as specified by the branching technique option */ if (T->br_var == 0) T->br_var = ios_choose_var(T, &T->br_sel); /* perform actual branching */ curr_p = T->curr->p; ret = branch_on(T, T->br_var, T->br_sel); T->br_var = T->br_sel = 0; if (ret == 0) { /* both branches have been created */ pred_p = curr_p; goto loop; } else if (ret == 1) { /* one branch is hopeless and has been pruned, so now the current subproblem is other branch */ /* the current subproblem should be considered as a new one, since one bound of the branching variable was changed */ T->curr->solved = T->curr->changed = 0; #if 1 /* 18/VII-2013 */ /* bad_cut = 0; */ #endif goto more; } else if (ret == 2) { /* both branches are hopeless and have been pruned; new subproblem selection is needed to continue the search */ goto fath; } else xassert(ret != ret); fath: /* the current subproblem has been fathomed */ if (T->parm->msg_lev >= GLP_MSG_DBG) xprintf("Node %d fathomed\n", p); /* freeze the current subproblem */ ios_freeze_node(T); /* and prune the corresponding branch of the tree */ ios_delete_node(T, p); /* if a new integer feasible solution has just been found, other branches may become hopeless and therefore must be pruned */ if (T->mip->mip_stat == GLP_FEAS) cleanup_the_tree(T); /* new subproblem selection is needed due to backtracking */ pred_p = 0; goto loop; done: /* display progress of the search on exit from the solver */ if (T->parm->msg_lev >= GLP_MSG_ON) show_progress(T, 0); if (T->mir_gen != NULL) #if 0 /* 06/III-2016 */ ios_mir_term(T->mir_gen), T->mir_gen = NULL; #else glp_mir_free(T->mir_gen), T->mir_gen = NULL; #endif #ifdef NEW_COVER /* 13/II-2018 */ if (T->cov_gen != NULL) glp_cov_free(T->cov_gen), T->cov_gen = NULL; #endif if (T->clq_gen != NULL) #if 0 /* 08/III-2016 */ ios_clq_term(T->clq_gen), T->clq_gen = NULL; #else glp_cfg_free(T->clq_gen), T->clq_gen = NULL; #endif /* return to the calling program */ return ret; } /* eof */