/* glpipm.c */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2000-2013 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "glpipm.h" #include "glpmat.h" #define ITER_MAX 100 /* maximal number of iterations */ struct csa { /* common storage area */ /*--------------------------------------------------------------*/ /* LP data */ int m; /* number of rows (equality constraints) */ int n; /* number of columns (structural variables) */ int *A_ptr; /* int A_ptr[1+m+1]; */ int *A_ind; /* int A_ind[A_ptr[m+1]]; */ double *A_val; /* double A_val[A_ptr[m+1]]; */ /* mxn-matrix A in storage-by-rows format */ double *b; /* double b[1+m]; */ /* m-vector b of right-hand sides */ double *c; /* double c[1+n]; */ /* n-vector c of objective coefficients; c[0] is constant term of the objective function */ /*--------------------------------------------------------------*/ /* LP solution */ double *x; /* double x[1+n]; */ double *y; /* double y[1+m]; */ double *z; /* double z[1+n]; */ /* current point in primal-dual space; the best point on exit */ /*--------------------------------------------------------------*/ /* control parameters */ const glp_iptcp *parm; /*--------------------------------------------------------------*/ /* working arrays and variables */ double *D; /* double D[1+n]; */ /* diagonal nxn-matrix D = X*inv(Z), where X = diag(x[j]) and Z = diag(z[j]) */ int *P; /* int P[1+m+m]; */ /* permutation mxm-matrix P used to minimize fill-in in Cholesky factorization */ int *S_ptr; /* int S_ptr[1+m+1]; */ int *S_ind; /* int S_ind[S_ptr[m+1]]; */ double *S_val; /* double S_val[S_ptr[m+1]]; */ double *S_diag; /* double S_diag[1+m]; */ /* symmetric mxm-matrix S = P*A*D*A'*P' whose upper triangular part without diagonal elements is stored in S_ptr, S_ind, and S_val in storage-by-rows format, diagonal elements are stored in S_diag */ int *U_ptr; /* int U_ptr[1+m+1]; */ int *U_ind; /* int U_ind[U_ptr[m+1]]; */ double *U_val; /* double U_val[U_ptr[m+1]]; */ double *U_diag; /* double U_diag[1+m]; */ /* upper triangular mxm-matrix U defining Cholesky factorization S = U'*U; its non-diagonal elements are stored in U_ptr, U_ind, U_val in storage-by-rows format, diagonal elements are stored in U_diag */ int iter; /* iteration number (0, 1, 2, ...); iter = 0 corresponds to the initial point */ double obj; /* current value of the objective function */ double rpi; /* relative primal infeasibility rpi = ||A*x-b||/(1+||b||) */ double rdi; /* relative dual infeasibility rdi = ||A'*y+z-c||/(1+||c||) */ double gap; /* primal-dual gap = |c'*x-b'*y|/(1+|c'*x|) which is a relative difference between primal and dual objective functions */ double phi; /* merit function phi = ||A*x-b||/max(1,||b||) + + ||A'*y+z-c||/max(1,||c||) + + |c'*x-b'*y|/max(1,||b||,||c||) */ double mu; /* duality measure mu = x'*z/n (used as barrier parameter) */ double rmu; /* rmu = max(||A*x-b||,||A'*y+z-c||)/mu */ double rmu0; /* the initial value of rmu on iteration 0 */ double *phi_min; /* double phi_min[1+ITER_MAX]; */ /* phi_min[k] = min(phi[k]), where phi[k] is the value of phi on k-th iteration, 0 <= k <= iter */ int best_iter; /* iteration number, on which the value of phi reached its best (minimal) value */ double *best_x; /* double best_x[1+n]; */ double *best_y; /* double best_y[1+m]; */ double *best_z; /* double best_z[1+n]; */ /* best point (in the sense of the merit function phi) which has been reached on iteration iter_best */ double best_obj; /* objective value at the best point */ double *dx_aff; /* double dx_aff[1+n]; */ double *dy_aff; /* double dy_aff[1+m]; */ double *dz_aff; /* double dz_aff[1+n]; */ /* affine scaling direction */ double alfa_aff_p, alfa_aff_d; /* maximal primal and dual stepsizes in affine scaling direction, on which x and z are still non-negative */ double mu_aff; /* duality measure mu_aff = x_aff'*z_aff/n in the boundary point x_aff' = x+alfa_aff_p*dx_aff, z_aff' = z+alfa_aff_d*dz_aff */ double sigma; /* Mehrotra's heuristic parameter (0 <= sigma <= 1) */ double *dx_cc; /* double dx_cc[1+n]; */ double *dy_cc; /* double dy_cc[1+m]; */ double *dz_cc; /* double dz_cc[1+n]; */ /* centering corrector direction */ double *dx; /* double dx[1+n]; */ double *dy; /* double dy[1+m]; */ double *dz; /* double dz[1+n]; */ /* final combined direction dx = dx_aff+dx_cc, dy = dy_aff+dy_cc, dz = dz_aff+dz_cc */ double alfa_max_p; double alfa_max_d; /* maximal primal and dual stepsizes in combined direction, on which x and z are still non-negative */ }; /*********************************************************************** * initialize - allocate and initialize common storage area * * This routine allocates and initializes the common storage area (CSA) * used by interior-point method routines. */ static void initialize(struct csa *csa) { int m = csa->m; int n = csa->n; int i; if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("Matrix A has %d non-zeros\n", csa->A_ptr[m+1]-1); csa->D = xcalloc(1+n, sizeof(double)); /* P := I */ csa->P = xcalloc(1+m+m, sizeof(int)); for (i = 1; i <= m; i++) csa->P[i] = csa->P[m+i] = i; /* S := A*A', symbolically */ csa->S_ptr = xcalloc(1+m+1, sizeof(int)); csa->S_ind = adat_symbolic(m, n, csa->P, csa->A_ptr, csa->A_ind, csa->S_ptr); if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("Matrix S = A*A' has %d non-zeros (upper triangle)\n", csa->S_ptr[m+1]-1 + m); /* determine P using specified ordering algorithm */ if (csa->parm->ord_alg == GLP_ORD_NONE) { if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("Original ordering is being used\n"); for (i = 1; i <= m; i++) csa->P[i] = csa->P[m+i] = i; } else if (csa->parm->ord_alg == GLP_ORD_QMD) { if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("Minimum degree ordering (QMD)...\n"); min_degree(m, csa->S_ptr, csa->S_ind, csa->P); } else if (csa->parm->ord_alg == GLP_ORD_AMD) { if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("Approximate minimum degree ordering (AMD)...\n"); amd_order1(m, csa->S_ptr, csa->S_ind, csa->P); } else if (csa->parm->ord_alg == GLP_ORD_SYMAMD) { if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("Approximate minimum degree ordering (SYMAMD)...\n") ; symamd_ord(m, csa->S_ptr, csa->S_ind, csa->P); } else xassert(csa != csa); /* S := P*A*A'*P', symbolically */ xfree(csa->S_ind); csa->S_ind = adat_symbolic(m, n, csa->P, csa->A_ptr, csa->A_ind, csa->S_ptr); csa->S_val = xcalloc(csa->S_ptr[m+1], sizeof(double)); csa->S_diag = xcalloc(1+m, sizeof(double)); /* compute Cholesky factorization S = U'*U, symbolically */ if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("Computing Cholesky factorization S = L*L'...\n"); csa->U_ptr = xcalloc(1+m+1, sizeof(int)); csa->U_ind = chol_symbolic(m, csa->S_ptr, csa->S_ind, csa->U_ptr); if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("Matrix L has %d non-zeros\n", csa->U_ptr[m+1]-1 + m); csa->U_val = xcalloc(csa->U_ptr[m+1], sizeof(double)); csa->U_diag = xcalloc(1+m, sizeof(double)); csa->iter = 0; csa->obj = 0.0; csa->rpi = 0.0; csa->rdi = 0.0; csa->gap = 0.0; csa->phi = 0.0; csa->mu = 0.0; csa->rmu = 0.0; csa->rmu0 = 0.0; csa->phi_min = xcalloc(1+ITER_MAX, sizeof(double)); csa->best_iter = 0; csa->best_x = xcalloc(1+n, sizeof(double)); csa->best_y = xcalloc(1+m, sizeof(double)); csa->best_z = xcalloc(1+n, sizeof(double)); csa->best_obj = 0.0; csa->dx_aff = xcalloc(1+n, sizeof(double)); csa->dy_aff = xcalloc(1+m, sizeof(double)); csa->dz_aff = xcalloc(1+n, sizeof(double)); csa->alfa_aff_p = 0.0; csa->alfa_aff_d = 0.0; csa->mu_aff = 0.0; csa->sigma = 0.0; csa->dx_cc = xcalloc(1+n, sizeof(double)); csa->dy_cc = xcalloc(1+m, sizeof(double)); csa->dz_cc = xcalloc(1+n, sizeof(double)); csa->dx = csa->dx_aff; csa->dy = csa->dy_aff; csa->dz = csa->dz_aff; csa->alfa_max_p = 0.0; csa->alfa_max_d = 0.0; return; } /*********************************************************************** * A_by_vec - compute y = A*x * * This routine computes matrix-vector product y = A*x, where A is the * constraint matrix. */ static void A_by_vec(struct csa *csa, double x[], double y[]) { /* compute y = A*x */ int m = csa->m; int *A_ptr = csa->A_ptr; int *A_ind = csa->A_ind; double *A_val = csa->A_val; int i, t, beg, end; double temp; for (i = 1; i <= m; i++) { temp = 0.0; beg = A_ptr[i], end = A_ptr[i+1]; for (t = beg; t < end; t++) temp += A_val[t] * x[A_ind[t]]; y[i] = temp; } return; } /*********************************************************************** * AT_by_vec - compute y = A'*x * * This routine computes matrix-vector product y = A'*x, where A' is a * matrix transposed to the constraint matrix A. */ static void AT_by_vec(struct csa *csa, double x[], double y[]) { /* compute y = A'*x, where A' is transposed to A */ int m = csa->m; int n = csa->n; int *A_ptr = csa->A_ptr; int *A_ind = csa->A_ind; double *A_val = csa->A_val; int i, j, t, beg, end; double temp; for (j = 1; j <= n; j++) y[j] = 0.0; for (i = 1; i <= m; i++) { temp = x[i]; if (temp == 0.0) continue; beg = A_ptr[i], end = A_ptr[i+1]; for (t = beg; t < end; t++) y[A_ind[t]] += A_val[t] * temp; } return; } /*********************************************************************** * decomp_NE - numeric factorization of matrix S = P*A*D*A'*P' * * This routine implements numeric phase of Cholesky factorization of * the matrix S = P*A*D*A'*P', which is a permuted matrix of the normal * equation system. Matrix D is assumed to be already computed. */ static void decomp_NE(struct csa *csa) { adat_numeric(csa->m, csa->n, csa->P, csa->A_ptr, csa->A_ind, csa->A_val, csa->D, csa->S_ptr, csa->S_ind, csa->S_val, csa->S_diag); chol_numeric(csa->m, csa->S_ptr, csa->S_ind, csa->S_val, csa->S_diag, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag); return; } /*********************************************************************** * solve_NE - solve normal equation system * * This routine solves the normal equation system: * * A*D*A'*y = h. * * It is assumed that the matrix A*D*A' has been previously factorized * by the routine decomp_NE. * * On entry the array y contains the vector of right-hand sides h. On * exit this array contains the computed vector of unknowns y. * * Once the vector y has been computed the routine checks for numeric * stability. If the residual vector: * * r = A*D*A'*y - h * * is relatively small, the routine returns zero, otherwise non-zero is * returned. */ static int solve_NE(struct csa *csa, double y[]) { int m = csa->m; int n = csa->n; int *P = csa->P; int i, j, ret = 0; double *h, *r, *w; /* save vector of right-hand sides h */ h = xcalloc(1+m, sizeof(double)); for (i = 1; i <= m; i++) h[i] = y[i]; /* solve normal equation system (A*D*A')*y = h */ /* since S = P*A*D*A'*P' = U'*U, then A*D*A' = P'*U'*U*P, so we have inv(A*D*A') = P'*inv(U)*inv(U')*P */ /* w := P*h */ w = xcalloc(1+m, sizeof(double)); for (i = 1; i <= m; i++) w[i] = y[P[i]]; /* w := inv(U')*w */ ut_solve(m, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag, w); /* w := inv(U)*w */ u_solve(m, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag, w); /* y := P'*w */ for (i = 1; i <= m; i++) y[i] = w[P[m+i]]; xfree(w); /* compute residual vector r = A*D*A'*y - h */ r = xcalloc(1+m, sizeof(double)); /* w := A'*y */ w = xcalloc(1+n, sizeof(double)); AT_by_vec(csa, y, w); /* w := D*w */ for (j = 1; j <= n; j++) w[j] *= csa->D[j]; /* r := A*w */ A_by_vec(csa, w, r); xfree(w); /* r := r - h */ for (i = 1; i <= m; i++) r[i] -= h[i]; /* check for numeric stability */ for (i = 1; i <= m; i++) { if (fabs(r[i]) / (1.0 + fabs(h[i])) > 1e-4) { ret = 1; break; } } xfree(h); xfree(r); return ret; } /*********************************************************************** * solve_NS - solve Newtonian system * * This routine solves the Newtonian system: * * A*dx = p * * A'*dy + dz = q * * Z*dx + X*dz = r * * where X = diag(x[j]), Z = diag(z[j]), by reducing it to the normal * equation system: * * (A*inv(Z)*X*A')*dy = A*inv(Z)*(X*q-r)+p * * (it is assumed that the matrix A*inv(Z)*X*A' has been factorized by * the routine decomp_NE). * * Once vector dy has been computed the routine computes vectors dx and * dz as follows: * * dx = inv(Z)*(X*(A'*dy-q)+r) * * dz = inv(X)*(r-Z*dx) * * The routine solve_NS returns the same code which was reported by the * routine solve_NE (see above). */ static int solve_NS(struct csa *csa, double p[], double q[], double r[], double dx[], double dy[], double dz[]) { int m = csa->m; int n = csa->n; double *x = csa->x; double *z = csa->z; int i, j, ret; double *w = dx; /* compute the vector of right-hand sides A*inv(Z)*(X*q-r)+p for the normal equation system */ for (j = 1; j <= n; j++) w[j] = (x[j] * q[j] - r[j]) / z[j]; A_by_vec(csa, w, dy); for (i = 1; i <= m; i++) dy[i] += p[i]; /* solve the normal equation system to compute vector dy */ ret = solve_NE(csa, dy); /* compute vectors dx and dz */ AT_by_vec(csa, dy, dx); for (j = 1; j <= n; j++) { dx[j] = (x[j] * (dx[j] - q[j]) + r[j]) / z[j]; dz[j] = (r[j] - z[j] * dx[j]) / x[j]; } return ret; } /*********************************************************************** * initial_point - choose initial point using Mehrotra's heuristic * * This routine chooses a starting point using a heuristic proposed in * the paper: * * S. Mehrotra. On the implementation of a primal-dual interior point * method. SIAM J. on Optim., 2(4), pp. 575-601, 1992. * * The starting point x in the primal space is chosen as a solution of * the following least squares problem: * * minimize ||x|| * * subject to A*x = b * * which can be computed explicitly as follows: * * x = A'*inv(A*A')*b * * Similarly, the starting point (y, z) in the dual space is chosen as * a solution of the following least squares problem: * * minimize ||z|| * * subject to A'*y + z = c * * which can be computed explicitly as follows: * * y = inv(A*A')*A*c * * z = c - A'*y * * However, some components of the vectors x and z may be non-positive * or close to zero, so the routine uses a Mehrotra's heuristic to find * a more appropriate starting point. */ static void initial_point(struct csa *csa) { int m = csa->m; int n = csa->n; double *b = csa->b; double *c = csa->c; double *x = csa->x; double *y = csa->y; double *z = csa->z; double *D = csa->D; int i, j; double dp, dd, ex, ez, xz; /* factorize A*A' */ for (j = 1; j <= n; j++) D[j] = 1.0; decomp_NE(csa); /* x~ = A'*inv(A*A')*b */ for (i = 1; i <= m; i++) y[i] = b[i]; solve_NE(csa, y); AT_by_vec(csa, y, x); /* y~ = inv(A*A')*A*c */ A_by_vec(csa, c, y); solve_NE(csa, y); /* z~ = c - A'*y~ */ AT_by_vec(csa, y,z); for (j = 1; j <= n; j++) z[j] = c[j] - z[j]; /* use Mehrotra's heuristic in order to choose more appropriate starting point with positive components of vectors x and z */ dp = dd = 0.0; for (j = 1; j <= n; j++) { if (dp < -1.5 * x[j]) dp = -1.5 * x[j]; if (dd < -1.5 * z[j]) dd = -1.5 * z[j]; } /* note that b = 0 involves x = 0, and c = 0 involves y = 0 and z = 0, so we need to be careful */ if (dp == 0.0) dp = 1.5; if (dd == 0.0) dd = 1.5; ex = ez = xz = 0.0; for (j = 1; j <= n; j++) { ex += (x[j] + dp); ez += (z[j] + dd); xz += (x[j] + dp) * (z[j] + dd); } dp += 0.5 * (xz / ez); dd += 0.5 * (xz / ex); for (j = 1; j <= n; j++) { x[j] += dp; z[j] += dd; xassert(x[j] > 0.0 && z[j] > 0.0); } return; } /*********************************************************************** * basic_info - perform basic computations at the current point * * This routine computes the following quantities at the current point: * * 1) value of the objective function: * * F = c'*x + c[0] * * 2) relative primal infeasibility: * * rpi = ||A*x-b|| / (1+||b||) * * 3) relative dual infeasibility: * * rdi = ||A'*y+z-c|| / (1+||c||) * * 4) primal-dual gap (relative difference between the primal and the * dual objective function values): * * gap = |c'*x-b'*y| / (1+|c'*x|) * * 5) merit function: * * phi = ||A*x-b|| / max(1,||b||) + ||A'*y+z-c|| / max(1,||c||) + * * + |c'*x-b'*y| / max(1,||b||,||c||) * * 6) duality measure: * * mu = x'*z / n * * 7) the ratio of infeasibility to mu: * * rmu = max(||A*x-b||,||A'*y+z-c||) / mu * * where ||*|| denotes euclidian norm, *' denotes transposition. */ static void basic_info(struct csa *csa) { int m = csa->m; int n = csa->n; double *b = csa->b; double *c = csa->c; double *x = csa->x; double *y = csa->y; double *z = csa->z; int i, j; double norm1, bnorm, norm2, cnorm, cx, by, *work, temp; /* compute value of the objective function */ temp = c[0]; for (j = 1; j <= n; j++) temp += c[j] * x[j]; csa->obj = temp; /* norm1 = ||A*x-b|| */ work = xcalloc(1+m, sizeof(double)); A_by_vec(csa, x, work); norm1 = 0.0; for (i = 1; i <= m; i++) norm1 += (work[i] - b[i]) * (work[i] - b[i]); norm1 = sqrt(norm1); xfree(work); /* bnorm = ||b|| */ bnorm = 0.0; for (i = 1; i <= m; i++) bnorm += b[i] * b[i]; bnorm = sqrt(bnorm); /* compute relative primal infeasibility */ csa->rpi = norm1 / (1.0 + bnorm); /* norm2 = ||A'*y+z-c|| */ work = xcalloc(1+n, sizeof(double)); AT_by_vec(csa, y, work); norm2 = 0.0; for (j = 1; j <= n; j++) norm2 += (work[j] + z[j] - c[j]) * (work[j] + z[j] - c[j]); norm2 = sqrt(norm2); xfree(work); /* cnorm = ||c|| */ cnorm = 0.0; for (j = 1; j <= n; j++) cnorm += c[j] * c[j]; cnorm = sqrt(cnorm); /* compute relative dual infeasibility */ csa->rdi = norm2 / (1.0 + cnorm); /* by = b'*y */ by = 0.0; for (i = 1; i <= m; i++) by += b[i] * y[i]; /* cx = c'*x */ cx = 0.0; for (j = 1; j <= n; j++) cx += c[j] * x[j]; /* compute primal-dual gap */ csa->gap = fabs(cx - by) / (1.0 + fabs(cx)); /* compute merit function */ csa->phi = 0.0; csa->phi += norm1 / (bnorm > 1.0 ? bnorm : 1.0); csa->phi += norm2 / (cnorm > 1.0 ? cnorm : 1.0); temp = 1.0; if (temp < bnorm) temp = bnorm; if (temp < cnorm) temp = cnorm; csa->phi += fabs(cx - by) / temp; /* compute duality measure */ temp = 0.0; for (j = 1; j <= n; j++) temp += x[j] * z[j]; csa->mu = temp / (double)n; /* compute the ratio of infeasibility to mu */ csa->rmu = (norm1 > norm2 ? norm1 : norm2) / csa->mu; return; } /*********************************************************************** * make_step - compute next point using Mehrotra's technique * * This routine computes the next point using the predictor-corrector * technique proposed in the paper: * * S. Mehrotra. On the implementation of a primal-dual interior point * method. SIAM J. on Optim., 2(4), pp. 575-601, 1992. * * At first, the routine computes so called affine scaling (predictor) * direction (dx_aff,dy_aff,dz_aff) which is a solution of the system: * * A*dx_aff = b - A*x * * A'*dy_aff + dz_aff = c - A'*y - z * * Z*dx_aff + X*dz_aff = - X*Z*e * * where (x,y,z) is the current point, X = diag(x[j]), Z = diag(z[j]), * e = (1,...,1)'. * * Then, the routine computes the centering parameter sigma, using the * following Mehrotra's heuristic: * * alfa_aff_p = inf{0 <= alfa <= 1 | x+alfa*dx_aff >= 0} * * alfa_aff_d = inf{0 <= alfa <= 1 | z+alfa*dz_aff >= 0} * * mu_aff = (x+alfa_aff_p*dx_aff)'*(z+alfa_aff_d*dz_aff)/n * * sigma = (mu_aff/mu)^3 * * where alfa_aff_p is the maximal stepsize along the affine scaling * direction in the primal space, alfa_aff_d is the maximal stepsize * along the same direction in the dual space. * * After determining sigma the routine computes so called centering * (corrector) direction (dx_cc,dy_cc,dz_cc) which is the solution of * the system: * * A*dx_cc = 0 * * A'*dy_cc + dz_cc = 0 * * Z*dx_cc + X*dz_cc = sigma*mu*e - X*Z*e * * Finally, the routine computes the combined direction * * (dx,dy,dz) = (dx_aff,dy_aff,dz_aff) + (dx_cc,dy_cc,dz_cc) * * and determines maximal primal and dual stepsizes along the combined * direction: * * alfa_max_p = inf{0 <= alfa <= 1 | x+alfa*dx >= 0} * * alfa_max_d = inf{0 <= alfa <= 1 | z+alfa*dz >= 0} * * In order to prevent the next point to be too close to the boundary * of the positive ortant, the routine decreases maximal stepsizes: * * alfa_p = gamma_p * alfa_max_p * * alfa_d = gamma_d * alfa_max_d * * where gamma_p and gamma_d are scaling factors, and computes the next * point: * * x_new = x + alfa_p * dx * * y_new = y + alfa_d * dy * * z_new = z + alfa_d * dz * * which becomes the current point on the next iteration. */ static int make_step(struct csa *csa) { int m = csa->m; int n = csa->n; double *b = csa->b; double *c = csa->c; double *x = csa->x; double *y = csa->y; double *z = csa->z; double *dx_aff = csa->dx_aff; double *dy_aff = csa->dy_aff; double *dz_aff = csa->dz_aff; double *dx_cc = csa->dx_cc; double *dy_cc = csa->dy_cc; double *dz_cc = csa->dz_cc; double *dx = csa->dx; double *dy = csa->dy; double *dz = csa->dz; int i, j, ret = 0; double temp, gamma_p, gamma_d, *p, *q, *r; /* allocate working arrays */ p = xcalloc(1+m, sizeof(double)); q = xcalloc(1+n, sizeof(double)); r = xcalloc(1+n, sizeof(double)); /* p = b - A*x */ A_by_vec(csa, x, p); for (i = 1; i <= m; i++) p[i] = b[i] - p[i]; /* q = c - A'*y - z */ AT_by_vec(csa, y,q); for (j = 1; j <= n; j++) q[j] = c[j] - q[j] - z[j]; /* r = - X * Z * e */ for (j = 1; j <= n; j++) r[j] = - x[j] * z[j]; /* solve the first Newtonian system */ if (solve_NS(csa, p, q, r, dx_aff, dy_aff, dz_aff)) { ret = 1; goto done; } /* alfa_aff_p = inf{0 <= alfa <= 1 | x + alfa*dx_aff >= 0} */ /* alfa_aff_d = inf{0 <= alfa <= 1 | z + alfa*dz_aff >= 0} */ csa->alfa_aff_p = csa->alfa_aff_d = 1.0; for (j = 1; j <= n; j++) { if (dx_aff[j] < 0.0) { temp = - x[j] / dx_aff[j]; if (csa->alfa_aff_p > temp) csa->alfa_aff_p = temp; } if (dz_aff[j] < 0.0) { temp = - z[j] / dz_aff[j]; if (csa->alfa_aff_d > temp) csa->alfa_aff_d = temp; } } /* mu_aff = (x+alfa_aff_p*dx_aff)' * (z+alfa_aff_d*dz_aff) / n */ temp = 0.0; for (j = 1; j <= n; j++) temp += (x[j] + csa->alfa_aff_p * dx_aff[j]) * (z[j] + csa->alfa_aff_d * dz_aff[j]); csa->mu_aff = temp / (double)n; /* sigma = (mu_aff/mu)^3 */ temp = csa->mu_aff / csa->mu; csa->sigma = temp * temp * temp; /* p = 0 */ for (i = 1; i <= m; i++) p[i] = 0.0; /* q = 0 */ for (j = 1; j <= n; j++) q[j] = 0.0; /* r = sigma * mu * e - X * Z * e */ for (j = 1; j <= n; j++) r[j] = csa->sigma * csa->mu - dx_aff[j] * dz_aff[j]; /* solve the second Newtonian system with the same coefficients but with altered right-hand sides */ if (solve_NS(csa, p, q, r, dx_cc, dy_cc, dz_cc)) { ret = 1; goto done; } /* (dx,dy,dz) = (dx_aff,dy_aff,dz_aff) + (dx_cc,dy_cc,dz_cc) */ for (j = 1; j <= n; j++) dx[j] = dx_aff[j] + dx_cc[j]; for (i = 1; i <= m; i++) dy[i] = dy_aff[i] + dy_cc[i]; for (j = 1; j <= n; j++) dz[j] = dz_aff[j] + dz_cc[j]; /* alfa_max_p = inf{0 <= alfa <= 1 | x + alfa*dx >= 0} */ /* alfa_max_d = inf{0 <= alfa <= 1 | z + alfa*dz >= 0} */ csa->alfa_max_p = csa->alfa_max_d = 1.0; for (j = 1; j <= n; j++) { if (dx[j] < 0.0) { temp = - x[j] / dx[j]; if (csa->alfa_max_p > temp) csa->alfa_max_p = temp; } if (dz[j] < 0.0) { temp = - z[j] / dz[j]; if (csa->alfa_max_d > temp) csa->alfa_max_d = temp; } } /* determine scale factors (not implemented yet) */ gamma_p = 0.90; gamma_d = 0.90; /* compute the next point */ for (j = 1; j <= n; j++) { x[j] += gamma_p * csa->alfa_max_p * dx[j]; xassert(x[j] > 0.0); } for (i = 1; i <= m; i++) y[i] += gamma_d * csa->alfa_max_d * dy[i]; for (j = 1; j <= n; j++) { z[j] += gamma_d * csa->alfa_max_d * dz[j]; xassert(z[j] > 0.0); } done: /* free working arrays */ xfree(p); xfree(q); xfree(r); return ret; } /*********************************************************************** * terminate - deallocate common storage area * * This routine frees all memory allocated to the common storage area * used by interior-point method routines. */ static void terminate(struct csa *csa) { xfree(csa->D); xfree(csa->P); xfree(csa->S_ptr); xfree(csa->S_ind); xfree(csa->S_val); xfree(csa->S_diag); xfree(csa->U_ptr); xfree(csa->U_ind); xfree(csa->U_val); xfree(csa->U_diag); xfree(csa->phi_min); xfree(csa->best_x); xfree(csa->best_y); xfree(csa->best_z); xfree(csa->dx_aff); xfree(csa->dy_aff); xfree(csa->dz_aff); xfree(csa->dx_cc); xfree(csa->dy_cc); xfree(csa->dz_cc); return; } /*********************************************************************** * ipm_main - main interior-point method routine * * This is a main routine of the primal-dual interior-point method. * * The routine ipm_main returns one of the following codes: * * 0 - optimal solution found; * 1 - problem has no feasible (primal or dual) solution; * 2 - no convergence; * 3 - iteration limit exceeded; * 4 - numeric instability on solving Newtonian system. * * In case of non-zero return code the routine returns the best point, * which has been reached during optimization. */ static int ipm_main(struct csa *csa) { int m = csa->m; int n = csa->n; int i, j, status; double temp; /* choose initial point using Mehrotra's heuristic */ if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("Guessing initial point...\n"); initial_point(csa); /* main loop starts here */ if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("Optimization begins...\n"); for (;;) { /* perform basic computations at the current point */ basic_info(csa); /* save initial value of rmu */ if (csa->iter == 0) csa->rmu0 = csa->rmu; /* accumulate values of min(phi[k]) and save the best point */ xassert(csa->iter <= ITER_MAX); if (csa->iter == 0 || csa->phi_min[csa->iter-1] > csa->phi) { csa->phi_min[csa->iter] = csa->phi; csa->best_iter = csa->iter; for (j = 1; j <= n; j++) csa->best_x[j] = csa->x[j]; for (i = 1; i <= m; i++) csa->best_y[i] = csa->y[i]; for (j = 1; j <= n; j++) csa->best_z[j] = csa->z[j]; csa->best_obj = csa->obj; } else csa->phi_min[csa->iter] = csa->phi_min[csa->iter-1]; /* display information at the current point */ if (csa->parm->msg_lev >= GLP_MSG_ON) xprintf("%3d: obj = %17.9e; rpi = %8.1e; rdi = %8.1e; gap =" " %8.1e\n", csa->iter, csa->obj, csa->rpi, csa->rdi, csa->gap); /* check if the current point is optimal */ if (csa->rpi < 1e-8 && csa->rdi < 1e-8 && csa->gap < 1e-8) { if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("OPTIMAL SOLUTION FOUND\n"); status = 0; break; } /* check if the problem has no feasible solution */ temp = 1e5 * csa->phi_min[csa->iter]; if (temp < 1e-8) temp = 1e-8; if (csa->phi >= temp) { if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("PROBLEM HAS NO FEASIBLE PRIMAL/DUAL SOLUTION\n") ; status = 1; break; } /* check for very slow convergence or divergence */ if (((csa->rpi >= 1e-8 || csa->rdi >= 1e-8) && csa->rmu / csa->rmu0 >= 1e6) || (csa->iter >= 30 && csa->phi_min[csa->iter] >= 0.5 * csa->phi_min[csa->iter - 30])) { if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("NO CONVERGENCE; SEARCH TERMINATED\n"); status = 2; break; } /* check for maximal number of iterations */ if (csa->iter == ITER_MAX) { if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n"); status = 3; break; } /* start the next iteration */ csa->iter++; /* factorize normal equation system */ for (j = 1; j <= n; j++) csa->D[j] = csa->x[j] / csa->z[j]; decomp_NE(csa); /* compute the next point using Mehrotra's predictor-corrector technique */ if (make_step(csa)) { if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("NUMERIC INSTABILITY; SEARCH TERMINATED\n"); status = 4; break; } } /* restore the best point */ if (status != 0) { for (j = 1; j <= n; j++) csa->x[j] = csa->best_x[j]; for (i = 1; i <= m; i++) csa->y[i] = csa->best_y[i]; for (j = 1; j <= n; j++) csa->z[j] = csa->best_z[j]; if (csa->parm->msg_lev >= GLP_MSG_ALL) xprintf("Best point %17.9e was reached on iteration %d\n", csa->best_obj, csa->best_iter); } /* return to the calling program */ return status; } /*********************************************************************** * NAME * * ipm_solve - core LP solver based on the interior-point method * * SYNOPSIS * * #include "glpipm.h" * int ipm_solve(glp_prob *P, const glp_iptcp *parm); * * DESCRIPTION * * The routine ipm_solve is a core LP solver based on the primal-dual * interior-point method. * * The routine assumes the following standard formulation of LP problem * to be solved: * * minimize * * F = c[0] + c[1]*x[1] + c[2]*x[2] + ... + c[n]*x[n] * * subject to linear constraints * * a[1,1]*x[1] + a[1,2]*x[2] + ... + a[1,n]*x[n] = b[1] * * a[2,1]*x[1] + a[2,2]*x[2] + ... + a[2,n]*x[n] = b[2] * * . . . . . . * * a[m,1]*x[1] + a[m,2]*x[2] + ... + a[m,n]*x[n] = b[m] * * and non-negative variables * * x[1] >= 0, x[2] >= 0, ..., x[n] >= 0 * * where: * F is the objective function; * x[1], ..., x[n] are (structural) variables; * c[0] is a constant term of the objective function; * c[1], ..., c[n] are objective coefficients; * a[1,1], ..., a[m,n] are constraint coefficients; * b[1], ..., b[n] are right-hand sides. * * The solution is three vectors x, y, and z, which are stored by the * routine in the arrays x, y, and z, respectively. These vectors * correspond to the best primal-dual point found during optimization. * They are approximate solution of the following system (which is the * Karush-Kuhn-Tucker optimality conditions): * * A*x = b (primal feasibility condition) * * A'*y + z = c (dual feasibility condition) * * x'*z = 0 (primal-dual complementarity condition) * * x >= 0, z >= 0 (non-negativity condition) * * where: * x[1], ..., x[n] are primal (structural) variables; * y[1], ..., y[m] are dual variables (Lagrange multipliers) for * equality constraints; * z[1], ..., z[n] are dual variables (Lagrange multipliers) for * non-negativity constraints. * * RETURNS * * 0 LP has been successfully solved. * * GLP_ENOCVG * No convergence. * * GLP_EITLIM * Iteration limit exceeded. * * GLP_EINSTAB * Numeric instability on solving Newtonian system. * * In case of non-zero return code the routine returns the best point, * which has been reached during optimization. */ int ipm_solve(glp_prob *P, const glp_iptcp *parm) { struct csa _dsa, *csa = &_dsa; int m = P->m; int n = P->n; int nnz = P->nnz; GLPROW *row; GLPCOL *col; GLPAIJ *aij; int i, j, loc, ret, *A_ind, *A_ptr; double dir, *A_val, *b, *c, *x, *y, *z; xassert(m > 0); xassert(n > 0); /* allocate working arrays */ A_ptr = xcalloc(1+m+1, sizeof(int)); A_ind = xcalloc(1+nnz, sizeof(int)); A_val = xcalloc(1+nnz, sizeof(double)); b = xcalloc(1+m, sizeof(double)); c = xcalloc(1+n, sizeof(double)); x = xcalloc(1+n, sizeof(double)); y = xcalloc(1+m, sizeof(double)); z = xcalloc(1+n, sizeof(double)); /* prepare rows and constraint coefficients */ loc = 1; for (i = 1; i <= m; i++) { row = P->row[i]; xassert(row->type == GLP_FX); b[i] = row->lb * row->rii; A_ptr[i] = loc; for (aij = row->ptr; aij != NULL; aij = aij->r_next) { A_ind[loc] = aij->col->j; A_val[loc] = row->rii * aij->val * aij->col->sjj; loc++; } } A_ptr[m+1] = loc; xassert(loc-1 == nnz); /* prepare columns and objective coefficients */ if (P->dir == GLP_MIN) dir = +1.0; else if (P->dir == GLP_MAX) dir = -1.0; else xassert(P != P); c[0] = dir * P->c0; for (j = 1; j <= n; j++) { col = P->col[j]; xassert(col->type == GLP_LO && col->lb == 0.0); c[j] = dir * col->coef * col->sjj; } /* allocate and initialize the common storage area */ csa->m = m; csa->n = n; csa->A_ptr = A_ptr; csa->A_ind = A_ind; csa->A_val = A_val; csa->b = b; csa->c = c; csa->x = x; csa->y = y; csa->z = z; csa->parm = parm; initialize(csa); /* solve LP with the interior-point method */ ret = ipm_main(csa); /* deallocate the common storage area */ terminate(csa); /* determine solution status */ if (ret == 0) { /* optimal solution found */ P->ipt_stat = GLP_OPT; ret = 0; } else if (ret == 1) { /* problem has no feasible (primal or dual) solution */ P->ipt_stat = GLP_NOFEAS; ret = 0; } else if (ret == 2) { /* no convergence */ P->ipt_stat = GLP_INFEAS; ret = GLP_ENOCVG; } else if (ret == 3) { /* iteration limit exceeded */ P->ipt_stat = GLP_INFEAS; ret = GLP_EITLIM; } else if (ret == 4) { /* numeric instability on solving Newtonian system */ P->ipt_stat = GLP_INFEAS; ret = GLP_EINSTAB; } else xassert(ret != ret); /* store row solution components */ for (i = 1; i <= m; i++) { row = P->row[i]; row->pval = row->lb; row->dval = dir * y[i] * row->rii; } /* store column solution components */ P->ipt_obj = P->c0; for (j = 1; j <= n; j++) { col = P->col[j]; col->pval = x[j] * col->sjj; col->dval = dir * z[j] / col->sjj; P->ipt_obj += col->coef * col->pval; } /* free working arrays */ xfree(A_ptr); xfree(A_ind); xfree(A_val); xfree(b); xfree(c); xfree(x); xfree(y); xfree(z); return ret; } /* eof */