/* glpmat.h (linear algebra routines) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2000-2013 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #ifndef GLPMAT_H #define GLPMAT_H /*********************************************************************** * FULL-VECTOR STORAGE * * For a sparse vector x having n elements, ne of which are non-zero, * the full-vector storage format uses two arrays x_ind and x_vec, which * are set up as follows: * * x_ind is an integer array of length [1+ne]. Location x_ind[0] is * not used, and locations x_ind[1], ..., x_ind[ne] contain indices of * non-zero elements in vector x. * * x_vec is a floating-point array of length [1+n]. Location x_vec[0] * is not used, and locations x_vec[1], ..., x_vec[n] contain numeric * values of ALL elements in vector x, including its zero elements. * * Let, for example, the following sparse vector x be given: * * (0, 1, 0, 0, 2, 3, 0, 4) * * Then the arrays are: * * x_ind = { X; 2, 5, 6, 8 } * * x_vec = { X; 0, 1, 0, 0, 2, 3, 0, 4 } * * COMPRESSED-VECTOR STORAGE * * For a sparse vector x having n elements, ne of which are non-zero, * the compressed-vector storage format uses two arrays x_ind and x_vec, * which are set up as follows: * * x_ind is an integer array of length [1+ne]. Location x_ind[0] is * not used, and locations x_ind[1], ..., x_ind[ne] contain indices of * non-zero elements in vector x. * * x_vec is a floating-point array of length [1+ne]. Location x_vec[0] * is not used, and locations x_vec[1], ..., x_vec[ne] contain numeric * values of corresponding non-zero elements in vector x. * * Let, for example, the following sparse vector x be given: * * (0, 1, 0, 0, 2, 3, 0, 4) * * Then the arrays are: * * x_ind = { X; 2, 5, 6, 8 } * * x_vec = { X; 1, 2, 3, 4 } * * STORAGE-BY-ROWS * * For a sparse matrix A, which has m rows, n columns, and ne non-zero * elements the storage-by-rows format uses three arrays A_ptr, A_ind, * and A_val, which are set up as follows: * * A_ptr is an integer array of length [1+m+1] also called "row pointer * array". It contains the relative starting positions of each row of A * in the arrays A_ind and A_val, i.e. element A_ptr[i], 1 <= i <= m, * indicates where row i begins in the arrays A_ind and A_val. If all * elements in row i are zero, then A_ptr[i] = A_ptr[i+1]. Location * A_ptr[0] is not used, location A_ptr[1] must contain 1, and location * A_ptr[m+1] must contain ne+1 that indicates the position after the * last element in the arrays A_ind and A_val. * * A_ind is an integer array of length [1+ne]. Location A_ind[0] is not * used, and locations A_ind[1], ..., A_ind[ne] contain column indices * of (non-zero) elements in matrix A. * * A_val is a floating-point array of length [1+ne]. Location A_val[0] * is not used, and locations A_val[1], ..., A_val[ne] contain numeric * values of non-zero elements in matrix A. * * Non-zero elements of matrix A are stored contiguously, and the rows * of matrix A are stored consecutively from 1 to m in the arrays A_ind * and A_val. The elements in each row of A may be stored in any order * in A_ind and A_val. Note that elements with duplicate column indices * are not allowed. * * Let, for example, the following sparse matrix A be given: * * | 11 . 13 . . . | * | 21 22 . 24 . . | * | . 32 33 . . . | * | . . 43 44 . 46 | * | . . . . . . | * | 61 62 . . . 66 | * * Then the arrays are: * * A_ptr = { X; 1, 3, 6, 8, 11, 11; 14 } * * A_ind = { X; 1, 3; 4, 2, 1; 2, 3; 4, 3, 6; 1, 2, 6 } * * A_val = { X; 11, 13; 24, 22, 21; 32, 33; 44, 43, 46; 61, 62, 66 } * * PERMUTATION MATRICES * * Let P be a permutation matrix of the order n. It is represented as * an integer array P_per of length [1+n+n] as follows: if p[i,j] = 1, * then P_per[i] = j and P_per[n+j] = i. Location P_per[0] is not used. * * Let A' = P*A. If i-th row of A corresponds to i'-th row of A', then * P_per[i'] = i and P_per[n+i] = i'. * * References: * * 1. Gustavson F.G. Some basic techniques for solving sparse systems of * linear equations. In Rose and Willoughby (1972), pp. 41-52. * * 2. Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard. * University of Tennessee (2001). */ #define check_fvs _glp_mat_check_fvs int check_fvs(int n, int nnz, int ind[], double vec[]); /* check sparse vector in full-vector storage format */ #define check_pattern _glp_mat_check_pattern int check_pattern(int m, int n, int A_ptr[], int A_ind[]); /* check pattern of sparse matrix */ #define transpose _glp_mat_transpose void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[], int AT_ptr[], int AT_ind[], double AT_val[]); /* transpose sparse matrix */ #define adat_symbolic _glp_mat_adat_symbolic int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[], int S_ptr[]); /* compute S = P*A*D*A'*P' (symbolic phase) */ #define adat_numeric _glp_mat_adat_numeric void adat_numeric(int m, int n, int P_per[], int A_ptr[], int A_ind[], double A_val[], double D_diag[], int S_ptr[], int S_ind[], double S_val[], double S_diag[]); /* compute S = P*A*D*A'*P' (numeric phase) */ #define min_degree _glp_mat_min_degree void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]); /* minimum degree ordering */ #define amd_order1 _glp_mat_amd_order1 void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[]); /* approximate minimum degree ordering (AMD) */ #define symamd_ord _glp_mat_symamd_ord void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[]); /* approximate minimum degree ordering (SYMAMD) */ #define chol_symbolic _glp_mat_chol_symbolic int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]); /* compute Cholesky factorization (symbolic phase) */ #define chol_numeric _glp_mat_chol_numeric int chol_numeric(int n, int A_ptr[], int A_ind[], double A_val[], double A_diag[], int U_ptr[], int U_ind[], double U_val[], double U_diag[]); /* compute Cholesky factorization (numeric phase) */ #define u_solve _glp_mat_u_solve void u_solve(int n, int U_ptr[], int U_ind[], double U_val[], double U_diag[], double x[]); /* solve upper triangular system U*x = b */ #define ut_solve _glp_mat_ut_solve void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[], double U_diag[], double x[]); /* solve lower triangular system U'*x = b */ #endif /* eof */