/* glpscl.c (problem scaling routines) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2000-2013 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "misc.h" #include "prob.h" /*********************************************************************** * min_row_aij - determine minimal |a[i,j]| in i-th row * * This routine returns minimal magnitude of (non-zero) constraint * coefficients in i-th row of the constraint matrix. * * If the parameter scaled is zero, the original constraint matrix A is * assumed. Otherwise, the scaled constraint matrix R*A*S is assumed. * * If i-th row of the matrix is empty, the routine returns 1. */ static double min_row_aij(glp_prob *lp, int i, int scaled) { GLPAIJ *aij; double min_aij, temp; xassert(1 <= i && i <= lp->m); min_aij = 1.0; for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next) { temp = fabs(aij->val); if (scaled) temp *= (aij->row->rii * aij->col->sjj); if (aij->r_prev == NULL || min_aij > temp) min_aij = temp; } return min_aij; } /*********************************************************************** * max_row_aij - determine maximal |a[i,j]| in i-th row * * This routine returns maximal magnitude of (non-zero) constraint * coefficients in i-th row of the constraint matrix. * * If the parameter scaled is zero, the original constraint matrix A is * assumed. Otherwise, the scaled constraint matrix R*A*S is assumed. * * If i-th row of the matrix is empty, the routine returns 1. */ static double max_row_aij(glp_prob *lp, int i, int scaled) { GLPAIJ *aij; double max_aij, temp; xassert(1 <= i && i <= lp->m); max_aij = 1.0; for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next) { temp = fabs(aij->val); if (scaled) temp *= (aij->row->rii * aij->col->sjj); if (aij->r_prev == NULL || max_aij < temp) max_aij = temp; } return max_aij; } /*********************************************************************** * min_col_aij - determine minimal |a[i,j]| in j-th column * * This routine returns minimal magnitude of (non-zero) constraint * coefficients in j-th column of the constraint matrix. * * If the parameter scaled is zero, the original constraint matrix A is * assumed. Otherwise, the scaled constraint matrix R*A*S is assumed. * * If j-th column of the matrix is empty, the routine returns 1. */ static double min_col_aij(glp_prob *lp, int j, int scaled) { GLPAIJ *aij; double min_aij, temp; xassert(1 <= j && j <= lp->n); min_aij = 1.0; for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next) { temp = fabs(aij->val); if (scaled) temp *= (aij->row->rii * aij->col->sjj); if (aij->c_prev == NULL || min_aij > temp) min_aij = temp; } return min_aij; } /*********************************************************************** * max_col_aij - determine maximal |a[i,j]| in j-th column * * This routine returns maximal magnitude of (non-zero) constraint * coefficients in j-th column of the constraint matrix. * * If the parameter scaled is zero, the original constraint matrix A is * assumed. Otherwise, the scaled constraint matrix R*A*S is assumed. * * If j-th column of the matrix is empty, the routine returns 1. */ static double max_col_aij(glp_prob *lp, int j, int scaled) { GLPAIJ *aij; double max_aij, temp; xassert(1 <= j && j <= lp->n); max_aij = 1.0; for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next) { temp = fabs(aij->val); if (scaled) temp *= (aij->row->rii * aij->col->sjj); if (aij->c_prev == NULL || max_aij < temp) max_aij = temp; } return max_aij; } /*********************************************************************** * min_mat_aij - determine minimal |a[i,j]| in constraint matrix * * This routine returns minimal magnitude of (non-zero) constraint * coefficients in the constraint matrix. * * If the parameter scaled is zero, the original constraint matrix A is * assumed. Otherwise, the scaled constraint matrix R*A*S is assumed. * * If the matrix is empty, the routine returns 1. */ static double min_mat_aij(glp_prob *lp, int scaled) { int i; double min_aij, temp; min_aij = 1.0; for (i = 1; i <= lp->m; i++) { temp = min_row_aij(lp, i, scaled); if (i == 1 || min_aij > temp) min_aij = temp; } return min_aij; } /*********************************************************************** * max_mat_aij - determine maximal |a[i,j]| in constraint matrix * * This routine returns maximal magnitude of (non-zero) constraint * coefficients in the constraint matrix. * * If the parameter scaled is zero, the original constraint matrix A is * assumed. Otherwise, the scaled constraint matrix R*A*S is assumed. * * If the matrix is empty, the routine returns 1. */ static double max_mat_aij(glp_prob *lp, int scaled) { int i; double max_aij, temp; max_aij = 1.0; for (i = 1; i <= lp->m; i++) { temp = max_row_aij(lp, i, scaled); if (i == 1 || max_aij < temp) max_aij = temp; } return max_aij; } /*********************************************************************** * eq_scaling - perform equilibration scaling * * This routine performs equilibration scaling of rows and columns of * the constraint matrix. * * If the parameter flag is zero, the routine scales rows at first and * then columns. Otherwise, the routine scales columns and then rows. * * Rows are scaled as follows: * * n * a'[i,j] = a[i,j] / max |a[i,j]|, i = 1,...,m. * j=1 * * This makes the infinity (maximum) norm of each row of the matrix * equal to 1. * * Columns are scaled as follows: * * m * a'[i,j] = a[i,j] / max |a[i,j]|, j = 1,...,n. * i=1 * * This makes the infinity (maximum) norm of each column of the matrix * equal to 1. */ static void eq_scaling(glp_prob *lp, int flag) { int i, j, pass; double temp; xassert(flag == 0 || flag == 1); for (pass = 0; pass <= 1; pass++) { if (pass == flag) { /* scale rows */ for (i = 1; i <= lp->m; i++) { temp = max_row_aij(lp, i, 1); glp_set_rii(lp, i, glp_get_rii(lp, i) / temp); } } else { /* scale columns */ for (j = 1; j <= lp->n; j++) { temp = max_col_aij(lp, j, 1); glp_set_sjj(lp, j, glp_get_sjj(lp, j) / temp); } } } return; } /*********************************************************************** * gm_scaling - perform geometric mean scaling * * This routine performs geometric mean scaling of rows and columns of * the constraint matrix. * * If the parameter flag is zero, the routine scales rows at first and * then columns. Otherwise, the routine scales columns and then rows. * * Rows are scaled as follows: * * a'[i,j] = a[i,j] / sqrt(alfa[i] * beta[i]), i = 1,...,m, * * where: * n n * alfa[i] = min |a[i,j]|, beta[i] = max |a[i,j]|. * j=1 j=1 * * This allows decreasing the ratio beta[i] / alfa[i] for each row of * the matrix. * * Columns are scaled as follows: * * a'[i,j] = a[i,j] / sqrt(alfa[j] * beta[j]), j = 1,...,n, * * where: * m m * alfa[j] = min |a[i,j]|, beta[j] = max |a[i,j]|. * i=1 i=1 * * This allows decreasing the ratio beta[j] / alfa[j] for each column * of the matrix. */ static void gm_scaling(glp_prob *lp, int flag) { int i, j, pass; double temp; xassert(flag == 0 || flag == 1); for (pass = 0; pass <= 1; pass++) { if (pass == flag) { /* scale rows */ for (i = 1; i <= lp->m; i++) { temp = min_row_aij(lp, i, 1) * max_row_aij(lp, i, 1); glp_set_rii(lp, i, glp_get_rii(lp, i) / sqrt(temp)); } } else { /* scale columns */ for (j = 1; j <= lp->n; j++) { temp = min_col_aij(lp, j, 1) * max_col_aij(lp, j, 1); glp_set_sjj(lp, j, glp_get_sjj(lp, j) / sqrt(temp)); } } } return; } /*********************************************************************** * max_row_ratio - determine worst scaling "quality" for rows * * This routine returns the worst scaling "quality" for rows of the * currently scaled constraint matrix: * * m * ratio = max ratio[i], * i=1 * where: * n n * ratio[i] = max |a[i,j]| / min |a[i,j]|, 1 <= i <= m, * j=1 j=1 * * is the scaling "quality" of i-th row. */ static double max_row_ratio(glp_prob *lp) { int i; double ratio, temp; ratio = 1.0; for (i = 1; i <= lp->m; i++) { temp = max_row_aij(lp, i, 1) / min_row_aij(lp, i, 1); if (i == 1 || ratio < temp) ratio = temp; } return ratio; } /*********************************************************************** * max_col_ratio - determine worst scaling "quality" for columns * * This routine returns the worst scaling "quality" for columns of the * currently scaled constraint matrix: * * n * ratio = max ratio[j], * j=1 * where: * m m * ratio[j] = max |a[i,j]| / min |a[i,j]|, 1 <= j <= n, * i=1 i=1 * * is the scaling "quality" of j-th column. */ static double max_col_ratio(glp_prob *lp) { int j; double ratio, temp; ratio = 1.0; for (j = 1; j <= lp->n; j++) { temp = max_col_aij(lp, j, 1) / min_col_aij(lp, j, 1); if (j == 1 || ratio < temp) ratio = temp; } return ratio; } /*********************************************************************** * gm_iterate - perform iterative geometric mean scaling * * This routine performs iterative geometric mean scaling of rows and * columns of the constraint matrix. * * The parameter it_max specifies the maximal number of iterations. * Recommended value of it_max is 15. * * The parameter tau specifies a minimal improvement of the scaling * "quality" on each iteration, 0 < tau < 1. It means than the scaling * process continues while the following condition is satisfied: * * ratio[k] <= tau * ratio[k-1], * * where ratio = max |a[i,j]| / min |a[i,j]| is the scaling "quality" * to be minimized, k is the iteration number. Recommended value of tau * is 0.90. */ static void gm_iterate(glp_prob *lp, int it_max, double tau) { int k, flag; double ratio = 0.0, r_old; /* if the scaling "quality" for rows is better than for columns, the rows are scaled first; otherwise, the columns are scaled first */ flag = (max_row_ratio(lp) > max_col_ratio(lp)); for (k = 1; k <= it_max; k++) { /* save the scaling "quality" from previous iteration */ r_old = ratio; /* determine the current scaling "quality" */ ratio = max_mat_aij(lp, 1) / min_mat_aij(lp, 1); #if 0 xprintf("k = %d; ratio = %g\n", k, ratio); #endif /* if improvement is not enough, terminate scaling */ if (k > 1 && ratio > tau * r_old) break; /* otherwise, perform another iteration */ gm_scaling(lp, flag); } return; } /*********************************************************************** * NAME * * scale_prob - scale problem data * * SYNOPSIS * * #include "glpscl.h" * void scale_prob(glp_prob *lp, int flags); * * DESCRIPTION * * The routine scale_prob performs automatic scaling of problem data * for the specified problem object. */ static void scale_prob(glp_prob *lp, int flags) { static const char *fmt = "%s: min|aij| = %10.3e max|aij| = %10.3e ratio = %10.3e\n"; double min_aij, max_aij, ratio; xprintf("Scaling...\n"); /* cancel the current scaling effect */ glp_unscale_prob(lp); /* report original scaling "quality" */ min_aij = min_mat_aij(lp, 1); max_aij = max_mat_aij(lp, 1); ratio = max_aij / min_aij; xprintf(fmt, " A", min_aij, max_aij, ratio); /* check if the problem is well scaled */ if (min_aij >= 0.10 && max_aij <= 10.0) { xprintf("Problem data seem to be well scaled\n"); /* skip scaling, if required */ if (flags & GLP_SF_SKIP) goto done; } /* perform iterative geometric mean scaling, if required */ if (flags & GLP_SF_GM) { gm_iterate(lp, 15, 0.90); min_aij = min_mat_aij(lp, 1); max_aij = max_mat_aij(lp, 1); ratio = max_aij / min_aij; xprintf(fmt, "GM", min_aij, max_aij, ratio); } /* perform equilibration scaling, if required */ if (flags & GLP_SF_EQ) { eq_scaling(lp, max_row_ratio(lp) > max_col_ratio(lp)); min_aij = min_mat_aij(lp, 1); max_aij = max_mat_aij(lp, 1); ratio = max_aij / min_aij; xprintf(fmt, "EQ", min_aij, max_aij, ratio); } /* round scale factors to nearest power of two, if required */ if (flags & GLP_SF_2N) { int i, j; for (i = 1; i <= lp->m; i++) glp_set_rii(lp, i, round2n(glp_get_rii(lp, i))); for (j = 1; j <= lp->n; j++) glp_set_sjj(lp, j, round2n(glp_get_sjj(lp, j))); min_aij = min_mat_aij(lp, 1); max_aij = max_mat_aij(lp, 1); ratio = max_aij / min_aij; xprintf(fmt, "2N", min_aij, max_aij, ratio); } done: return; } /*********************************************************************** * NAME * * glp_scale_prob - scale problem data * * SYNOPSIS * * void glp_scale_prob(glp_prob *lp, int flags); * * DESCRIPTION * * The routine glp_scale_prob performs automatic scaling of problem * data for the specified problem object. * * The parameter flags specifies scaling options used by the routine. * Options can be combined with the bitwise OR operator and may be the * following: * * GLP_SF_GM perform geometric mean scaling; * GLP_SF_EQ perform equilibration scaling; * GLP_SF_2N round scale factors to nearest power of two; * GLP_SF_SKIP skip scaling, if the problem is well scaled. * * The parameter flags may be specified as GLP_SF_AUTO, in which case * the routine chooses scaling options automatically. */ void glp_scale_prob(glp_prob *lp, int flags) { if (flags & ~(GLP_SF_GM | GLP_SF_EQ | GLP_SF_2N | GLP_SF_SKIP | GLP_SF_AUTO)) xerror("glp_scale_prob: flags = 0x%02X; invalid scaling option" "s\n", flags); if (flags & GLP_SF_AUTO) flags = (GLP_SF_GM | GLP_SF_EQ | GLP_SF_SKIP); scale_prob(lp, flags); return; } /* eof */