/* clqcut.c (clique cut generator) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2008-2016 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "cfg.h" #include "env.h" #include "prob.h" /*********************************************************************** * NAME * * glp_clq_cut - generate clique cut from conflict graph * * SYNOPSIS * * int glp_clq_cut(glp_prob *P, glp_cfg *G, int ind[], double val[]); * * DESCRIPTION * * This routine attempts to generate a clique cut. * * The cut generated by the routine is the following inequality: * * sum a[j] * x[j] <= b, * * which is expected to be violated at the current basic solution. * * If the cut has been successfully generated, the routine stores its * non-zero coefficients a[j] and corresponding column indices j in the * array locations val[1], ..., val[len] and ind[1], ..., ind[len], * where 1 <= len <= n is the number of non-zero coefficients. The * right-hand side value b is stored in val[0], and ind[0] is set to 0. * * RETURNS * * If the cut has been successfully generated, the routine returns * len, the number of non-zero coefficients in the cut, 1 <= len <= n. * Otherwise, the routine returns a non-positive value. */ int glp_clq_cut(glp_prob *P, glp_cfg *G, int ind[], double val[]) { int n = P->n; int *pos = G->pos; int *neg = G->neg; int nv = G->nv; int *ref = G->ref; int j, k, v, len; double rhs, sum; xassert(G->n == n); /* find maximum weight clique in conflict graph */ len = cfg_find_clique(P, G, ind, &sum); #ifdef GLP_DEBUG xprintf("len = %d; sum = %g\n", len, sum); cfg_check_clique(G, len, ind); #endif /* check if clique inequality is violated */ if (sum < 1.07) return 0; /* expand clique to maximal one */ len = cfg_expand_clique(G, len, ind); #ifdef GLP_DEBUG xprintf("maximal clique size = %d\n", len); cfg_check_clique(G, len, ind); #endif /* construct clique cut (fixed binary variables are removed, so this cut is only locally valid) */ rhs = 1.0; for (j = 1; j <= n; j++) val[j] = 0.0; for (k = 1; k <= len; k++) { /* v is clique vertex */ v = ind[k]; xassert(1 <= v && v <= nv); /* j is number of corresponding binary variable */ j = ref[v]; xassert(1 <= j && j <= n); if (pos[j] == v) { /* v corresponds to x[j] */ if (P->col[j]->type == GLP_FX) { /* x[j] is fixed */ rhs -= P->col[j]->prim; } else { /* x[j] is not fixed */ val[j] += 1.0; } } else if (neg[j] == v) { /* v corresponds to (1 - x[j]) */ if (P->col[j]->type == GLP_FX) { /* x[j] is fixed */ rhs -= (1.0 - P->col[j]->prim); } else { /* x[j] is not fixed */ val[j] -= 1.0; rhs -= 1.0; } } else xassert(v != v); } /* convert cut inequality to sparse format */ len = 0; for (j = 1; j <= n; j++) { if (val[j] != 0.0) { len++; ind[len] = j; val[len] = val[j]; } } ind[0] = 0, val[0] = rhs; return len; } /* eof */