/* covgen.c */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2017-2018 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "fvs.h" #include "ks.h" #include "prob.h" struct glp_cov { /* cover cut generator working area */ int n; /* number of columns (variables) */ glp_prob *set; /* set of globally valid 0-1 knapsack inequalities chosen from * the root problem; each inequality is either original row or * its relaxation (surrogate 0-1 knapsack) which is constructed * by substitution of lower/upper single/variable bounds for * continuous and general integer (non-binary) variables */ }; struct bnd { /* simple or variable bound */ /* if z = 0, it is a simple bound x >= or <= b; if b = -DBL_MAX * (b = +DBL_MAX), x has no lower (upper) bound; otherwise, if * z != 0, it is a variable bound x >= or <= a * z + b */ int z; /* number of binary variable or 0 */ double a, b; /* bound parameters */ }; struct csa { /* common storage area */ glp_prob *P; /* original (root) MIP */ struct bnd *l; /* struct bnd l[1+P->n]; */ /* lower simple/variable bounds of variables */ struct bnd *u; /* struct bnd u[1+P->n]; */ /* upper simple/variable bounds of variables */ glp_prob *set; /* see struct glp_cov above */ }; /*********************************************************************** * init_bounds - initialize bounds of variables with simple bounds * * This routine initializes lower and upper bounds of all variables * with simple bounds specified in the original mip. */ static void init_bounds(struct csa *csa) { glp_prob *P = csa->P; struct bnd *l = csa->l, *u = csa->u; int j; for (j = 1; j <= P->n; j++) { l[j].z = u[j].z = 0; l[j].a = u[j].a = 0; l[j].b = glp_get_col_lb(P, j); u[j].b = glp_get_col_ub(P, j); } return; } /*********************************************************************** * check_vb - check variable bound * * This routine checks if the specified i-th row has the form * * a1 * x + a2 * z >= or <= rhs, (1) * * where x is a non-fixed continuous or general integer variable, and * z is a binary variable. If it is, the routine converts the row to * the following variable lower/upper bound (VLB/VUB) of x: * * x >= or <= a * z + b, (2) * * where a = - a2 / a1, b = rhs / a1. Note that the inequality type is * changed to opposite one when a1 < 0. * * If the row is identified as a variable bound, the routine returns * GLP_LO for VLB or GLP_UP for VUB and provides the reference numbers * of variables x and z and values of a and b. Otherwise, the routine * returns zero. */ static int check_vb(struct csa *csa, int i, int *x, int *z, double *a, double *b) { glp_prob *P = csa->P; GLPROW *row; GLPAIJ *a1, *a2; int type; double rhs; xassert(1 <= i && i <= P->m); row = P->row[i]; /* check row type */ switch (row->type) { case GLP_LO: case GLP_UP: break; default: return 0; } /* take first term of the row */ a1 = row->ptr; if (a1 == NULL) return 0; /* take second term of the row */ a2 = a1->r_next; if (a2 == NULL) return 0; /* there should be exactly two terms in the row */ if (a2->r_next != NULL) return 0; /* if first term is a binary variable, swap the terms */ if (glp_get_col_kind(P, a1->col->j) == GLP_BV) { GLPAIJ *a; a = a1, a1 = a2, a2 = a; } /* now first term should be a non-fixed continuous or general * integer variable */ if (a1->col->type == GLP_FX) return 0; if (glp_get_col_kind(P, a1->col->j) == GLP_BV) return 0; /* and second term should be a binary variable */ if (glp_get_col_kind(P, a2->col->j) != GLP_BV) return 0; /* VLB/VUB row has been identified */ switch (row->type) { case GLP_LO: type = a1->val > 0 ? GLP_LO : GLP_UP; rhs = row->lb; break; case GLP_UP: type = a1->val > 0 ? GLP_UP : GLP_LO; rhs = row->ub; break; default: xassert(type != type); } *x = a1->col->j; *z = a2->col->j; *a = - a2->val / a1->val; *b = rhs / a1->val; return type; } /*********************************************************************** * set_vb - set variable bound * * This routine sets lower or upper variable bound specified as * * x >= a * z + b (type = GLP_LO) * * x <= a * z + b (type = GLP_UP) */ static void set_vb(struct csa *csa, int type, int x, int z, double a, double b) { glp_prob *P = csa->P; struct bnd *l = csa->l, *u = csa->u; xassert(glp_get_col_type(P, x) != GLP_FX); xassert(glp_get_col_kind(P, x) != GLP_BV); xassert(glp_get_col_kind(P, z) == GLP_BV); xassert(a != 0); switch (type) { case GLP_LO: /* FIXME: check existing simple lower bound? */ l[x].z = z, l[x].a = a, l[x].b = b; break; case GLP_UP: /* FIXME: check existing simple upper bound? */ u[x].z = z, u[x].a = a, u[x].b = b; break; default: xassert(type != type); } return; } /*********************************************************************** * obtain_vbs - obtain and set variable bounds * * This routine walks thru all rows of the original mip, identifies * rows specifying variable lower/upper bounds, and sets these bounds * for corresponding (non-binary) variables. */ static void obtain_vbs(struct csa *csa) { glp_prob *P = csa->P; int i, x, z, type, save; double a, b; for (i = 1; i <= P->m; i++) { switch (P->row[i]->type) { case GLP_FR: break; case GLP_LO: case GLP_UP: type = check_vb(csa, i, &x, &z, &a, &b); if (type) set_vb(csa, type, x, z, a, b); break; case GLP_DB: case GLP_FX: /* double-side inequality l <= ... <= u and equality * ... = l = u are considered as two single inequalities * ... >= l and ... <= u */ save = P->row[i]->type; P->row[i]->type = GLP_LO; type = check_vb(csa, i, &x, &z, &a, &b); if (type) set_vb(csa, type, x, z, a, b); P->row[i]->type = GLP_UP; type = check_vb(csa, i, &x, &z, &a, &b); if (type) set_vb(csa, type, x, z, a, b); P->row[i]->type = save; break; default: xassert(P != P); } } return; } /*********************************************************************** * add_term - add term to sparse vector * * This routine computes the following linear combination: * * v := v + a * e[j], * * where v is a sparse vector in full storage format, a is a non-zero * scalar, e[j] is j-th column of unity matrix. */ static void add_term(FVS *v, int j, double a) { xassert(1 <= j && j <= v->n); xassert(a != 0); if (v->vec[j] == 0) { /* create j-th component */ v->nnz++; xassert(v->nnz <= v->n); v->ind[v->nnz] = j; } /* perform addition */ v->vec[j] += a; if (fabs(v->vec[j]) < 1e-9 * (1 + fabs(a))) { /* remove j-th component */ v->vec[j] = DBL_MIN; } return; } /*********************************************************************** * build_ks - build "0-1 knapsack" inequality * * Given an inequality of "not greater" type: * * sum{j in 1..n} a[j]*x[j] <= b, (1) * * this routine attempts to transform it to equivalent or relaxed "0-1 * knapsack" inequality that contains only binary variables. * * If x[j] is a binary variable, the term a[j]*x[j] is not changed. * Otherwise, if x[j] is a continuous or integer non-binary variable, * it is replaced by its lower (if a[j] > 0) or upper (if a[j] < 0) * single or variable bound. In the latter case, if x[j] is a non-fixed * variable, this results in a relaxation of original inequality known * as "surrogate knapsack". Thus, if the specified inequality is valid * for the original mip, the resulting inequality is also valid. * * Note that in both source and resulting inequalities coefficients * a[j] can have any sign. * * On entry to the routine the source inequality is specified by the * parameters n, ind (contains original numbers of x[j]), a, and b. The * parameter v is a working sparse vector whose components are assumed * to be zero. * * On exit the routine stores the resulting "0-1 knapsack" inequality * in the parameters ind, a, and b, and returns n which is the number * of terms in the resulting inequality. Zero content of the vector v * is restored before exit. * * If the resulting inequality cannot be constructed due to missing * lower/upper bounds of some variable, the routine returns a negative * value. */ static int build_ks(struct csa *csa, int n, int ind[], double a[], double *b, FVS *v) { glp_prob *P = csa->P; struct bnd *l = csa->l, *u = csa->u; int j, k; /* check that v = 0 */ #ifdef GLP_DEBUG fvs_check_vec(v); #endif xassert(v->nnz == 0); /* walk thru terms of original inequality */ for (j = 1; j <= n; j++) { /* process term a[j]*x[j] */ k = ind[j]; /* original number of x[j] in mip */ if (glp_get_col_kind(P, k) == GLP_BV) { /* x[j] is a binary variable */ /* include its term into resulting inequality */ add_term(v, k, a[j]); } else if (a[j] > 0) { /* substitute x[j] by its lower bound */ if (l[k].b == -DBL_MAX) { /* x[j] has no lower bound */ n = -1; goto skip; } else if (l[k].z == 0) { /* x[j] has simple lower bound */ *b -= a[j] * l[k].b; } else { /* x[j] has variable lower bound (a * z + b) */ add_term(v, l[k].z, a[j] * l[k].a); *b -= a[j] * l[k].b; } } else /* a[j] < 0 */ { /* substitute x[j] by its upper bound */ if (u[k].b == +DBL_MAX) { /* x[j] has no upper bound */ n = -1; goto skip; } else if (u[k].z == 0) { /* x[j] has simple upper bound */ *b -= a[j] * u[k].b; } else { /* x[j] has variable upper bound (a * z + b) */ add_term(v, u[k].z, a[j] * u[k].a); *b -= a[j] * u[k].b; } } } /* replace tiny coefficients by exact zeros (see add_term) */ fvs_adjust_vec(v, 2 * DBL_MIN); /* copy terms of resulting inequality */ xassert(v->nnz <= n); n = v->nnz; for (j = 1; j <= n; j++) { ind[j] = v->ind[j]; a[j] = v->vec[ind[j]]; } skip: /* restore zero content of v */ fvs_clear_vec(v); return n; } /*********************************************************************** * can_be_active - check if inequality can be active * * This routine checks if the specified "0-1 knapsack" inequality * * sum{j in 1..n} a[j]*x[j] <= b * * can be active. If so, the routine returns true, otherwise false. */ static int can_be_active(int n, const double a[], double b) { int j; double s; s = 0; for (j = 1; j <= n; j++) { if (a[j] > 0) s += a[j]; } return s > b + .001 * (1 + fabs(b)); } /*********************************************************************** * is_sos_ineq - check if inequality is packing (SOS) constraint * * This routine checks if the specified "0-1 knapsack" inequality * * sum{j in 1..n} a[j]*x[j] <= b (1) * * is equivalent to packing inequality (Padberg calls such inequalities * special ordered set or SOS constraints) * * sum{j in J'} x[j] - sum{j in J"} x[j] <= 1 - |J"|. (2) * * If so, the routine returns true, otherwise false. * * Note that if X is a set of feasible binary points satisfying to (2), * its convex hull conv(X) equals to the set of feasible points of LP * relaxation of (2), which is a n-dimensional simplex, so inequalities * (2) are useless for generating cover cuts (due to unimodularity). * * ALGORITHM * * First, we make all a[j] positive by complementing x[j] = 1 - x'[j] * in (1). This is performed implicitly (i.e. actually the array a is * not changed), but b is replaced by b - sum{j : a[j] < 0}. * * Then we find two smallest coefficients a[p] = min{j in 1..n} a[j] * and a[q] = min{j in 1..n : j != p} a[j]. It is obvious that if * a[p] + a[q] > b, then a[i] + a[j] > b for all i != j, from which it * follows that x[i] + x[j] <= 1 for all i != j. But the latter means * that the original inequality (with all a[j] > 0) is equivalent to * packing inequality * * sum{j in 1..n} x[j] <= 1. (3) * * Returning to original (uncomplemented) variables x'[j] = 1 - x[j] * we have that the original inequality is equivalent to (2), where * J' = {j : a[j] > 0} and J" = {j : a[j] < 0}. */ static int is_sos_ineq(int n, const double a[], double b) { int j, p, q; xassert(n >= 2); /* compute b := b - sum{j : a[j] < 0} */ for (j = 1; j <= n; j++) { if (a[j] < 0) b -= a[j]; } /* find a[p] = min{j in 1..n} a[j] */ p = 1; for (j = 2; j <= n; j++) { if (fabs(a[p]) > fabs(a[j])) p = j; } /* find a[q] = min{j in 1..n : j != p} a[j] */ q = 0; for (j = 1; j <= n; j++) { if (j != p) { if (q == 0 || fabs(a[q]) > fabs(a[j])) q = j; } } xassert(q != 0); /* check condition a[p] + a[q] > b */ return fabs(a[p]) + fabs(a[q]) > b + .001 * (1 + fabs(b)); } /*********************************************************************** * process_ineq - basic inequality processing * * This routine performs basic processing of an inequality of "not * greater" type * * sum{j in 1..n} a[j]*x[j] <= b * * specified by the parameters, n, ind, a, and b. * * If the inequality can be transformed to "0-1 knapsack" ineqiality * suitable for generating cover cuts, the routine adds it to the set * of "0-1 knapsack" inequalities. * * Note that the arrays ind and a are not saved on exit. */ static void process_ineq(struct csa *csa, int n, int ind[], double a[], double b, FVS *v) { int i; /* attempt to transform the specified inequality to equivalent or * relaxed "0-1 knapsack" inequality */ n = build_ks(csa, n, ind, a, &b, v); if (n <= 1) { /* uninteresting inequality (in principle, such inequalities * should be removed by the preprocessor) */ goto done; } if (!can_be_active(n, a, b)) { /* inequality is redundant (i.e. cannot be active) */ goto done; } if (is_sos_ineq(n, a, b)) { /* packing (SOS) inequality is useless for generating cover * cuts; currently such inequalities are just ignored */ goto done; } /* add resulting "0-1 knapsack" inequality to the set */ i = glp_add_rows(csa->set, 1); glp_set_mat_row(csa->set, i, n, ind, a); glp_set_row_bnds(csa->set, i, GLP_UP, b, b); done: return; } /**********************************************************************/ glp_cov *glp_cov_init(glp_prob *P) { /* create and initialize cover cut generator */ glp_cov *cov; struct csa csa; int i, k, len, *ind; double rhs, *val; FVS fvs; csa.P = P; csa.l = talloc(1+P->n, struct bnd); csa.u = talloc(1+P->n, struct bnd); csa.set = glp_create_prob(); glp_add_cols(csa.set, P->n); /* initialize bounds of variables with simple bounds */ init_bounds(&csa); /* obtain and set variable bounds */ obtain_vbs(&csa); /* allocate working arrays */ ind = talloc(1+P->n, int); val = talloc(1+P->n, double); fvs_alloc_vec(&fvs, P->n); /* process all rows of the root mip */ for (i = 1; i <= P->m; i++) { switch (P->row[i]->type) { case GLP_FR: break; case GLP_LO: /* obtain row of ">=" type */ len = glp_get_mat_row(P, i, ind, val); rhs = P->row[i]->lb; /* transforms it to row of "<=" type */ for (k = 1; k <= len; k++) val[k] = - val[k]; rhs = - rhs; /* process the row */ process_ineq(&csa, len, ind, val, rhs, &fvs); break; case GLP_UP: /* obtain row of "<=" type */ len = glp_get_mat_row(P, i, ind, val); rhs = P->row[i]->ub; /* and process it */ process_ineq(&csa, len, ind, val, rhs, &fvs); break; case GLP_DB: case GLP_FX: /* double-sided inequalitiy and equality constraints are * processed as two separate inequalities */ /* obtain row as if it were of ">=" type */ len = glp_get_mat_row(P, i, ind, val); rhs = P->row[i]->lb; /* transforms it to row of "<=" type */ for (k = 1; k <= len; k++) val[k] = - val[k]; rhs = - rhs; /* and process it */ process_ineq(&csa, len, ind, val, rhs, &fvs); /* obtain the same row as if it were of "<=" type */ len = glp_get_mat_row(P, i, ind, val); rhs = P->row[i]->ub; /* and process it */ process_ineq(&csa, len, ind, val, rhs, &fvs); break; default: xassert(P != P); } } /* free working arrays */ tfree(ind); tfree(val); fvs_check_vec(&fvs); fvs_free_vec(&fvs); /* the set of "0-1 knapsack" inequalities has been built */ if (csa.set->m == 0) { /* the set is empty */ xprintf("No 0-1 knapsack inequalities detected\n"); cov = NULL; glp_delete_prob(csa.set); } else { /* create the cover cut generator working area */ xprintf("Number of 0-1 knapsack inequalities = %d\n", csa.set->m); cov = talloc(1, glp_cov); cov->n = P->n; cov->set = csa.set; #if 0 glp_write_lp(cov->set, 0, "set.lp"); #endif } tfree(csa.l); tfree(csa.u); return cov; } /*********************************************************************** * solve_ks - solve 0-1 knapsack problem * * This routine finds (sub)optimal solution to 0-1 knapsack problem: * * maximize z = sum{j in 1..n} c[j]x[j] (1) * * s.t. sum{j in 1..n} a[j]x[j] <= b (2) * * x[j] in {0, 1} for all j in 1..n (3) * * It is assumed that the instance is non-normalized, i.e. parameters * a, b, and c may have any sign. * * On exit the routine stores the (sub)optimal point found in locations * x[1], ..., x[n] and returns the optimal objective value. However, if * the instance is infeasible, the routine returns INT_MIN. */ static int solve_ks(int n, const int a[], int b, const int c[], char x[]) { int z; /* surprisingly, even for some small instances (n = 50-100) * MT1 routine takes too much time, so it is used only for tiny * instances */ if (n <= 16) #if 0 z = ks_enum(n, a, b, c, x); #else z = ks_mt1(n, a, b, c, x); #endif else z = ks_greedy(n, a, b, c, x); return z; } /*********************************************************************** * simple_cover - find simple cover cut * * Given a 0-1 knapsack inequality (which may be globally as well as * locally valid) * * sum{j in 1..n} a[j]x[j] <= b, (1) * * where all x[j] are binary variables and all a[j] are positive, and * a fractional point x~{j in 1..n}, which is feasible to LP relaxation * of (1), this routine attempts to find a simple cover inequality * * sum{j in C} (1 - x[j]) >= 1, (2) * * which is valid for (1) and violated at x~. * * Actually, the routine finds a cover C, i.e. a subset of {1, ..., n} * such that * * sum{j in C} a[j] > b, (3) * * and which minimizes the left-hand side of (2) at x~ * * zeta = sum{j in C} (1 - x~[j]). (4) * * On exit the routine stores the characteritic vector z{j in 1..n} * of the cover found (i.e. z[j] = 1 means j in C, and z[j] = 0 means * j not in C), and returns corresponding minimal value of zeta (4). * However, if no cover is found, the routine returns DBL_MAX. * * ALGORITHM * * The separation problem (3)-(4) is converted to 0-1 knapsack problem * as follows. * * First, note that the constraint (3) is equivalent to * * sum{j in 1..n} a[j]z[j] >= b + eps, (5) * * where eps > 0 is a sufficiently small number (in case of integral * a and b we may take eps = 1). Multiplying both sides of (5) by (-1) * gives * * sum{j in 1..n} (-a[j])z[j] <= - b - eps. (6) * * To make all coefficients in (6) positive, z[j] is complemented by * substitution z[j] = 1 - z'[j] that finally gives * * sum{j in 1..n} a[j]z'[j] <= sum{j in 1..n} a[j] - b - eps. (7) * * Minimization of zeta (4) is equivalent to maximization of * * -zeta = sum{j in 1..n} (x~[j] - 1)z[j]. (8) * * Substitution z[j] = 1 - z'[j] gives * * -zeta = sum{j in 1..n} (1 - x~[j])z'[j] - zeta0, (9) * * where zeta0 = sum{j in 1..n} (1 - x~[j]) is a constant term. * * Thus, the 0-1 knapsack problem to be solved is the following: * * maximize * * -zeta = sum{j in 1..n} (1 - x~[j])z'[j] - zeta0 (10) * * subject to * * sum{j in 1..n} a[j]z'[j] <= sum{j in 1..n} a[j] - b - eps (11) * * z'[j] in {0,1} for all j = 1,...,n (12) * * (The constant term zeta0 doesn't affect the solution, so it can be * dropped.) */ static double simple_cover(int n, const double a[], double b, const double x[], char z[]) { int j, *aa, bb, *cc; double max_aj, min_aj, s, eps; xassert(n >= 3); /* allocate working arrays */ aa = talloc(1+n, int); cc = talloc(1+n, int); /* compute max{j in 1..n} a[j] and min{j in 1..n} a[j] */ max_aj = 0, min_aj = DBL_MAX; for (j = 1; j <= n; j++) { xassert(a[j] > 0); if (max_aj < a[j]) max_aj = a[j]; if (min_aj > a[j]) min_aj = a[j]; } /* scale and round constraint parameters to make them integral; * note that we make the resulting inequality stronger than (11), * so a[j]'s are rounded up while rhs is rounded down */ s = 0; for (j = 1; j <= n; j++) { s += a[j]; aa[j] = ceil(a[j] / max_aj * 1000); } bb = floor((s - b) / max_aj * 1000) - 1; /* scale and round obj. coefficients to make them integral; * again we make the objective function stronger than (10), so * the coefficients are rounded down */ for (j = 1; j <= n; j++) { xassert(0 <= x[j] && x[j] <= 1); cc[j] = floor((1 - x[j]) * 1000); } /* solve separation problem */ if (solve_ks(n, aa, bb, cc, z) == INT_MIN) { /* no cover exists */ s = DBL_MAX; goto skip; } /* determine z[j] = 1 - z'[j] */ for (j = 1; j <= n; j++) { xassert(z[j] == 0 || z[j] == 1); z[j] ^= 1; } /* check condition (11) for original (non-scaled) parameters */ s = 0; for (j = 1; j <= n; j++) { if (z[j]) s += a[j]; } eps = 0.01 * (min_aj >= 1 ? min_aj : 1); if (!(s >= b + eps)) { /* no cover found within a precision req'd */ s = DBL_MAX; goto skip; } /* compute corresponding zeta (4) for cover found */ s = 0; for (j = 1; j <= n; j++) { if (z[j]) s += 1 - x[j]; } skip: /* free working arrays */ tfree(aa); tfree(cc); return s; } /**********************************************************************/ void glp_cov_gen1(glp_prob *P, glp_cov *cov, glp_prob *pool) { /* generate locally valid simple cover cuts */ int i, k, len, new_len, *ind; double *val, rhs, *x, zeta; char *z; xassert(P->n == cov->n && P->n == cov->set->n); xassert(glp_get_status(P) == GLP_OPT); /* allocate working arrays */ ind = talloc(1+P->n, int); val = talloc(1+P->n, double); x = talloc(1+P->n, double); z = talloc(1+P->n, char); /* walk thru 0-1 knapsack inequalities */ for (i = 1; i <= cov->set->m; i++) { /* retrieve 0-1 knapsack inequality */ len = glp_get_mat_row(cov->set, i, ind, val); rhs = glp_get_row_ub(cov->set, i); xassert(rhs != +DBL_MAX); /* FIXME: skip, if slack is too large? */ /* substitute and eliminate binary variables which have been * fixed in the current subproblem (this makes the inequality * only locally valid) */ new_len = 0; for (k = 1; k <= len; k++) { if (glp_get_col_type(P, ind[k]) == GLP_FX) rhs -= val[k] * glp_get_col_prim(P, ind[k]); else { new_len++; ind[new_len] = ind[k]; val[new_len] = val[k]; } } len = new_len; /* we need at least 3 binary variables in the inequality */ if (len <= 2) continue; /* obtain values of binary variables from optimal solution to * LP relaxation of current subproblem */ for (k = 1; k <= len; k++) { xassert(glp_get_col_kind(P, ind[k]) == GLP_BV); x[k] = glp_get_col_prim(P, ind[k]); if (x[k] < 0.00001) x[k] = 0; else if (x[k] > 0.99999) x[k] = 1; /* if val[k] < 0, perform substitution x[k] = 1 - x'[k] to * make all coefficients positive */ if (val[k] < 0) { ind[k] = - ind[k]; /* x[k] is complemented */ val[k] = - val[k]; rhs += val[k]; x[k] = 1 - x[k]; } } /* find locally valid simple cover cut */ zeta = simple_cover(len, val, rhs, x, z); if (zeta > 0.95) { /* no violation or insufficient violation; see (2) */ continue; } /* construct cover inequality (2) for the cover found, which * for original binary variables x[k] is equivalent to: * sum{k in C'} x[k] + sum{k in C"} x'[k] <= |C| - 1 * or * sum{k in C'} x[k] + sum{k in C"} (1 - x[k]) <= |C| - 1 * or * sum{k in C'} x[k] - sum{k in C"} x[k] <= |C'| - 1 * since |C| - |C"| = |C'| */ new_len = 0; rhs = -1; for (k = 1; k <= len; k++) { if (z[k]) { new_len++; if (ind[k] > 0) { ind[new_len] = +ind[k]; val[new_len] = +1; rhs++; } else /* ind[k] < 0 */ { ind[new_len] = -ind[k]; val[new_len] = -1; } } } len = new_len; /* add the cover inequality to the local cut pool */ k = glp_add_rows(pool, 1); glp_set_mat_row(pool, k, len, ind, val); glp_set_row_bnds(pool, k, GLP_UP, rhs, rhs); } /* free working arrays */ tfree(ind); tfree(val); tfree(x); tfree(z); return; } /**********************************************************************/ void glp_cov_free(glp_cov *cov) { /* delete cover cut generator workspace */ xassert(cov != NULL); glp_delete_prob(cov->set); tfree(cov); return; } /* eof */