/* ffalg.c (Ford-Fulkerson algorithm) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2009-2013 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "ffalg.h" /*********************************************************************** * NAME * * ffalg - Ford-Fulkerson algorithm * * SYNOPSIS * * #include "ffalg.h" * void ffalg(int nv, int na, const int tail[], const int head[], * int s, int t, const int cap[], int x[], char cut[]); * * DESCRIPTION * * The routine ffalg implements the Ford-Fulkerson algorithm to find a * maximal flow in the specified flow network. * * INPUT PARAMETERS * * nv is the number of nodes, nv >= 2. * * na is the number of arcs, na >= 0. * * tail[a], a = 1,...,na, is the index of tail node of arc a. * * head[a], a = 1,...,na, is the index of head node of arc a. * * s is the source node index, 1 <= s <= nv. * * t is the sink node index, 1 <= t <= nv, t != s. * * cap[a], a = 1,...,na, is the capacity of arc a, cap[a] >= 0. * * NOTE: Multiple arcs are allowed, but self-loops are not allowed. * * OUTPUT PARAMETERS * * x[a], a = 1,...,na, is optimal value of the flow through arc a. * * cut[i], i = 1,...,nv, is 1 if node i is labelled, and 0 otherwise. * The set of arcs, whose one endpoint is labelled and other is not, * defines the minimal cut corresponding to the maximal flow found. * If the parameter cut is NULL, the cut information are not stored. * * REFERENCES * * L.R.Ford, Jr., and D.R.Fulkerson, "Flows in Networks," The RAND * Corp., Report R-375-PR (August 1962), Chap. I "Static Maximal Flow," * pp.30-33. */ void ffalg(int nv, int na, const int tail[], const int head[], int s, int t, const int cap[], int x[], char cut[]) { int a, delta, i, j, k, pos1, pos2, temp, *ptr, *arc, *link, *list; /* sanity checks */ xassert(nv >= 2); xassert(na >= 0); xassert(1 <= s && s <= nv); xassert(1 <= t && t <= nv); xassert(s != t); for (a = 1; a <= na; a++) { i = tail[a], j = head[a]; xassert(1 <= i && i <= nv); xassert(1 <= j && j <= nv); xassert(i != j); xassert(cap[a] >= 0); } /* allocate working arrays */ ptr = xcalloc(1+nv+1, sizeof(int)); arc = xcalloc(1+na+na, sizeof(int)); link = xcalloc(1+nv, sizeof(int)); list = xcalloc(1+nv, sizeof(int)); /* ptr[i] := (degree of node i) */ for (i = 1; i <= nv; i++) ptr[i] = 0; for (a = 1; a <= na; a++) { ptr[tail[a]]++; ptr[head[a]]++; } /* initialize arc pointers */ ptr[1]++; for (i = 1; i < nv; i++) ptr[i+1] += ptr[i]; ptr[nv+1] = ptr[nv]; /* build arc lists */ for (a = 1; a <= na; a++) { arc[--ptr[tail[a]]] = a; arc[--ptr[head[a]]] = a; } xassert(ptr[1] == 1); xassert(ptr[nv+1] == na+na+1); /* now the indices of arcs incident to node i are stored in * locations arc[ptr[i]], arc[ptr[i]+1], ..., arc[ptr[i+1]-1] */ /* initialize arc flows */ for (a = 1; a <= na; a++) x[a] = 0; loop: /* main loop starts here */ /* build augmenting tree rooted at s */ /* link[i] = 0 means that node i is not labelled yet; * link[i] = a means that arc a immediately precedes node i */ /* initially node s is labelled as the root */ for (i = 1; i <= nv; i++) link[i] = 0; link[s] = -1, list[1] = s, pos1 = pos2 = 1; /* breadth first search */ while (pos1 <= pos2) { /* dequeue node i */ i = list[pos1++]; /* consider all arcs incident to node i */ for (k = ptr[i]; k < ptr[i+1]; k++) { a = arc[k]; if (tail[a] == i) { /* a = i->j is a forward arc from s to t */ j = head[a]; /* if node j has been labelled, skip the arc */ if (link[j] != 0) continue; /* if the arc does not allow increasing the flow through * it, skip the arc */ if (x[a] == cap[a]) continue; } else if (head[a] == i) { /* a = i<-j is a backward arc from s to t */ j = tail[a]; /* if node j has been labelled, skip the arc */ if (link[j] != 0) continue; /* if the arc does not allow decreasing the flow through * it, skip the arc */ if (x[a] == 0) continue; } else xassert(a != a); /* label node j and enqueue it */ link[j] = a, list[++pos2] = j; /* check for breakthrough */ if (j == t) goto brkt; } } /* NONBREAKTHROUGH */ /* no augmenting path exists; current flow is maximal */ /* store minimal cut information, if necessary */ if (cut != NULL) { for (i = 1; i <= nv; i++) cut[i] = (char)(link[i] != 0); } goto done; brkt: /* BREAKTHROUGH */ /* walk through arcs of the augmenting path (s, ..., t) found in * the reverse order and determine maximal change of the flow */ delta = 0; for (j = t; j != s; j = i) { /* arc a immediately precedes node j in the path */ a = link[j]; if (head[a] == j) { /* a = i->j is a forward arc of the cycle */ i = tail[a]; /* x[a] may be increased until its upper bound */ temp = cap[a] - x[a]; } else if (tail[a] == j) { /* a = i<-j is a backward arc of the cycle */ i = head[a]; /* x[a] may be decreased until its lower bound */ temp = x[a]; } else xassert(a != a); if (delta == 0 || delta > temp) delta = temp; } xassert(delta > 0); /* increase the flow along the path */ for (j = t; j != s; j = i) { /* arc a immediately precedes node j in the path */ a = link[j]; if (head[a] == j) { /* a = i->j is a forward arc of the cycle */ i = tail[a]; x[a] += delta; } else if (tail[a] == j) { /* a = i<-j is a backward arc of the cycle */ i = head[a]; x[a] -= delta; } else xassert(a != a); } goto loop; done: /* free working arrays */ xfree(ptr); xfree(arc); xfree(link); xfree(list); return; } /* eof */