/* mygmp.h (integer and rational arithmetic) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2008-2015 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #ifndef MYGMP_H #define MYGMP_H #ifdef HAVE_CONFIG_H #include #endif #ifdef HAVE_GMP /* use GNU MP library */ #include #define gmp_pool_count() 0 #define gmp_free_mem() ((void)0) #else /* use GLPK MP module */ /*********************************************************************** * INTEGER NUMBERS * --------------- * Depending on its magnitude an integer number of arbitrary precision * is represented either in short format or in long format. * * Short format corresponds to the int type and allows representing * integer numbers in the range [-(2^31-1), +(2^31-1)]. Note that for * the most negative number of int type the short format is not used. * * In long format integer numbers are represented using the positional * system with the base (radix) 2^16 = 65536: * * x = (-1)^s sum{j in 0..n-1} d[j] * 65536^j, * * where x is the integer to be represented, s is its sign (+1 or -1), * d[j] are its digits (0 <= d[j] <= 65535). * * RATIONAL NUMBERS * ---------------- * A rational number is represented as an irreducible fraction: * * p / q, * * where p (numerator) and q (denominator) are integer numbers (q > 0) * having no common divisors. */ struct mpz { /* integer number */ int val; /* if ptr is a null pointer, the number is in short format, and val is its value; otherwise, the number is in long format, and val is its sign (+1 or -1) */ struct mpz_seg *ptr; /* pointer to the linked list of the number segments ordered in ascending of powers of the base */ }; struct mpz_seg { /* integer number segment */ unsigned short d[6]; /* six digits of the number ordered in ascending of powers of the base */ struct mpz_seg *next; /* pointer to the next number segment */ }; struct mpq { /* rational number (p / q) */ struct mpz p; /* numerator */ struct mpz q; /* denominator */ }; typedef struct mpz *mpz_t; typedef struct mpq *mpq_t; #define gmp_get_atom _glp_gmp_get_atom void *gmp_get_atom(int size); #define gmp_free_atom _glp_gmp_free_atom void gmp_free_atom(void *ptr, int size); #define gmp_pool_count _glp_gmp_pool_count int gmp_pool_count(void); #define gmp_get_work _glp_gmp_get_work unsigned short *gmp_get_work(int size); #define gmp_free_mem _glp_gmp_free_mem void gmp_free_mem(void); #define mpz_init(x) (void)((x) = _mpz_init()) #define _mpz_init _glp_mpz_init mpz_t _mpz_init(void); /* initialize x and set its value to 0 */ #define mpz_clear _glp_mpz_clear void mpz_clear(mpz_t x); /* free the space occupied by x */ #define mpz_set _glp_mpz_set void mpz_set(mpz_t z, mpz_t x); /* set the value of z from x */ #define mpz_set_si _glp_mpz_set_si void mpz_set_si(mpz_t x, int val); /* set the value of x to val */ #define mpz_get_d _glp_mpz_get_d double mpz_get_d(mpz_t x); /* convert x to a double, truncating if necessary */ #define mpz_get_d_2exp _glp_mpz_get_d_2exp double mpz_get_d_2exp(int *exp, mpz_t x); /* convert x to a double, returning the exponent separately */ #define mpz_swap _glp_mpz_swap void mpz_swap(mpz_t x, mpz_t y); /* swap the values x and y efficiently */ #define mpz_add _glp_mpz_add void mpz_add(mpz_t, mpz_t, mpz_t); /* set z to x + y */ #define mpz_sub _glp_mpz_sub void mpz_sub(mpz_t, mpz_t, mpz_t); /* set z to x - y */ #define mpz_mul _glp_mpz_mul void mpz_mul(mpz_t, mpz_t, mpz_t); /* set z to x * y */ #define mpz_neg _glp_mpz_neg void mpz_neg(mpz_t z, mpz_t x); /* set z to 0 - x */ #define mpz_abs _glp_mpz_abs void mpz_abs(mpz_t z, mpz_t x); /* set z to the absolute value of x */ #define mpz_div _glp_mpz_div void mpz_div(mpz_t q, mpz_t r, mpz_t x, mpz_t y); /* divide x by y, forming quotient q and/or remainder r */ #define mpz_gcd _glp_mpz_gcd void mpz_gcd(mpz_t z, mpz_t x, mpz_t y); /* set z to the greatest common divisor of x and y */ #define mpz_cmp _glp_mpz_cmp int mpz_cmp(mpz_t x, mpz_t y); /* compare x and y */ #define mpz_sgn _glp_mpz_sgn int mpz_sgn(mpz_t x); /* return +1 if x > 0, 0 if x = 0, and -1 if x < 0 */ #define mpz_out_str _glp_mpz_out_str int mpz_out_str(void *fp, int base, mpz_t x); /* output x on stream fp, as a string in given base */ #define mpq_init(x) (void)((x) = _mpq_init()) #define _mpq_init _glp_mpq_init mpq_t _mpq_init(void); /* initialize x, and set its value to 0/1 */ #define mpq_clear _glp_mpq_clear void mpq_clear(mpq_t x); /* free the space occupied by x */ #define mpq_canonicalize _glp_mpq_canonicalize void mpq_canonicalize(mpq_t x); /* canonicalize x */ #define mpq_set _glp_mpq_set void mpq_set(mpq_t z, mpq_t x); /* set the value of z from x */ #define mpq_set_si _glp_mpq_set_si void mpq_set_si(mpq_t x, int p, unsigned int q); /* set the value of x to p/q */ #define mpq_get_d _glp_mpq_get_d double mpq_get_d(mpq_t x); /* convert x to a double, truncating if necessary */ #define mpq_set_d _glp_mpq_set_d void mpq_set_d(mpq_t x, double val); /* set x to val; there is no rounding, the conversion is exact */ #define mpq_add _glp_mpq_add void mpq_add(mpq_t z, mpq_t x, mpq_t y); /* set z to x + y */ #define mpq_sub _glp_mpq_sub void mpq_sub(mpq_t z, mpq_t x, mpq_t y); /* set z to x - y */ #define mpq_mul _glp_mpq_mul void mpq_mul(mpq_t z, mpq_t x, mpq_t y); /* set z to x * y */ #define mpq_div _glp_mpq_div void mpq_div(mpq_t z, mpq_t x, mpq_t y); /* set z to x / y */ #define mpq_neg _glp_mpq_neg void mpq_neg(mpq_t z, mpq_t x); /* set z to 0 - x */ #define mpq_abs _glp_mpq_abs void mpq_abs(mpq_t z, mpq_t x); /* set z to the absolute value of x */ #define mpq_cmp _glp_mpq_cmp int mpq_cmp(mpq_t x, mpq_t y); /* compare x and y */ #define mpq_sgn _glp_mpq_sgn int mpq_sgn(mpq_t x); /* return +1 if x > 0, 0 if x = 0, and -1 if x < 0 */ #define mpq_out_str _glp_mpq_out_str int mpq_out_str(void *fp, int base, mpq_t x); /* output x on stream fp, as a string in given base */ #endif #endif /* eof */