/* okalg.c (out-of-kilter algorithm) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2009-2013 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "okalg.h" /*********************************************************************** * NAME * * okalg - out-of-kilter algorithm * * SYNOPSIS * * #include "okalg.h" * int okalg(int nv, int na, const int tail[], const int head[], * const int low[], const int cap[], const int cost[], int x[], * int pi[]); * * DESCRIPTION * * The routine okalg implements the out-of-kilter algorithm to find a * minimal-cost circulation in the specified flow network. * * INPUT PARAMETERS * * nv is the number of nodes, nv >= 0. * * na is the number of arcs, na >= 0. * * tail[a], a = 1,...,na, is the index of tail node of arc a. * * head[a], a = 1,...,na, is the index of head node of arc a. * * low[a], a = 1,...,na, is an lower bound to the flow through arc a. * * cap[a], a = 1,...,na, is an upper bound to the flow through arc a, * which is the capacity of the arc. * * cost[a], a = 1,...,na, is a per-unit cost of the flow through arc a. * * NOTES * * 1. Multiple arcs are allowed, but self-loops are not allowed. * * 2. It is required that 0 <= low[a] <= cap[a] for all arcs. * * 3. Arc costs may have any sign. * * OUTPUT PARAMETERS * * x[a], a = 1,...,na, is optimal value of the flow through arc a. * * pi[i], i = 1,...,nv, is Lagrange multiplier for flow conservation * equality constraint corresponding to node i (the node potential). * * RETURNS * * 0 optimal circulation found; * * 1 there is no feasible circulation; * * 2 integer overflow occured; * * 3 optimality test failed (logic error). * * REFERENCES * * L.R.Ford, Jr., and D.R.Fulkerson, "Flows in Networks," The RAND * Corp., Report R-375-PR (August 1962), Chap. III "Minimal Cost Flow * Problems," pp.113-26. */ static int overflow(int u, int v) { /* check for integer overflow on computing u + v */ if (u > 0 && v > 0 && u + v < 0) return 1; if (u < 0 && v < 0 && u + v > 0) return 1; return 0; } int okalg(int nv, int na, const int tail[], const int head[], const int low[], const int cap[], const int cost[], int x[], int pi[]) { int a, aok, delta, i, j, k, lambda, pos1, pos2, s, t, temp, ret, *ptr, *arc, *link, *list; /* sanity checks */ xassert(nv >= 0); xassert(na >= 0); for (a = 1; a <= na; a++) { i = tail[a], j = head[a]; xassert(1 <= i && i <= nv); xassert(1 <= j && j <= nv); xassert(i != j); xassert(0 <= low[a] && low[a] <= cap[a]); } /* allocate working arrays */ ptr = xcalloc(1+nv+1, sizeof(int)); arc = xcalloc(1+na+na, sizeof(int)); link = xcalloc(1+nv, sizeof(int)); list = xcalloc(1+nv, sizeof(int)); /* ptr[i] := (degree of node i) */ for (i = 1; i <= nv; i++) ptr[i] = 0; for (a = 1; a <= na; a++) { ptr[tail[a]]++; ptr[head[a]]++; } /* initialize arc pointers */ ptr[1]++; for (i = 1; i < nv; i++) ptr[i+1] += ptr[i]; ptr[nv+1] = ptr[nv]; /* build arc lists */ for (a = 1; a <= na; a++) { arc[--ptr[tail[a]]] = a; arc[--ptr[head[a]]] = a; } xassert(ptr[1] == 1); xassert(ptr[nv+1] == na+na+1); /* now the indices of arcs incident to node i are stored in * locations arc[ptr[i]], arc[ptr[i]+1], ..., arc[ptr[i+1]-1] */ /* initialize arc flows and node potentials */ for (a = 1; a <= na; a++) x[a] = 0; for (i = 1; i <= nv; i++) pi[i] = 0; loop: /* main loop starts here */ /* find out-of-kilter arc */ aok = 0; for (a = 1; a <= na; a++) { i = tail[a], j = head[a]; if (overflow(cost[a], pi[i] - pi[j])) { ret = 2; goto done; } lambda = cost[a] + (pi[i] - pi[j]); if (x[a] < low[a] || (lambda < 0 && x[a] < cap[a])) { /* arc a = i->j is out of kilter, and we need to increase * the flow through this arc */ aok = a, s = j, t = i; break; } if (x[a] > cap[a] || (lambda > 0 && x[a] > low[a])) { /* arc a = i->j is out of kilter, and we need to decrease * the flow through this arc */ aok = a, s = i, t = j; break; } } if (aok == 0) { /* all arcs are in kilter */ /* check for feasibility */ for (a = 1; a <= na; a++) { if (!(low[a] <= x[a] && x[a] <= cap[a])) { ret = 3; goto done; } } for (i = 1; i <= nv; i++) { temp = 0; for (k = ptr[i]; k < ptr[i+1]; k++) { a = arc[k]; if (tail[a] == i) { /* a is outgoing arc */ temp += x[a]; } else if (head[a] == i) { /* a is incoming arc */ temp -= x[a]; } else xassert(a != a); } if (temp != 0) { ret = 3; goto done; } } /* check for optimality */ for (a = 1; a <= na; a++) { i = tail[a], j = head[a]; lambda = cost[a] + (pi[i] - pi[j]); if ((lambda > 0 && x[a] != low[a]) || (lambda < 0 && x[a] != cap[a])) { ret = 3; goto done; } } /* current circulation is optimal */ ret = 0; goto done; } /* now we need to find a cycle (t, a, s, ..., t), which allows * increasing the flow along it, where a is the out-of-kilter arc * just found */ /* link[i] = 0 means that node i is not labelled yet; * link[i] = a means that arc a immediately precedes node i */ /* initially only node s is labelled */ for (i = 1; i <= nv; i++) link[i] = 0; link[s] = aok, list[1] = s, pos1 = pos2 = 1; /* breadth first search */ while (pos1 <= pos2) { /* dequeue node i */ i = list[pos1++]; /* consider all arcs incident to node i */ for (k = ptr[i]; k < ptr[i+1]; k++) { a = arc[k]; if (tail[a] == i) { /* a = i->j is a forward arc from s to t */ j = head[a]; /* if node j has been labelled, skip the arc */ if (link[j] != 0) continue; /* if the arc does not allow increasing the flow through * it, skip the arc */ if (x[a] >= cap[a]) continue; if (overflow(cost[a], pi[i] - pi[j])) { ret = 2; goto done; } lambda = cost[a] + (pi[i] - pi[j]); if (lambda > 0 && x[a] >= low[a]) continue; } else if (head[a] == i) { /* a = i<-j is a backward arc from s to t */ j = tail[a]; /* if node j has been labelled, skip the arc */ if (link[j] != 0) continue; /* if the arc does not allow decreasing the flow through * it, skip the arc */ if (x[a] <= low[a]) continue; if (overflow(cost[a], pi[j] - pi[i])) { ret = 2; goto done; } lambda = cost[a] + (pi[j] - pi[i]); if (lambda < 0 && x[a] <= cap[a]) continue; } else xassert(a != a); /* label node j and enqueue it */ link[j] = a, list[++pos2] = j; /* check for breakthrough */ if (j == t) goto brkt; } } /* NONBREAKTHROUGH */ /* consider all arcs, whose one endpoint is labelled and other is * not, and determine maximal change of node potentials */ delta = 0; for (a = 1; a <= na; a++) { i = tail[a], j = head[a]; if (link[i] != 0 && link[j] == 0) { /* a = i->j, where node i is labelled, node j is not */ if (overflow(cost[a], pi[i] - pi[j])) { ret = 2; goto done; } lambda = cost[a] + (pi[i] - pi[j]); if (x[a] <= cap[a] && lambda > 0) if (delta == 0 || delta > + lambda) delta = + lambda; } else if (link[i] == 0 && link[j] != 0) { /* a = j<-i, where node j is labelled, node i is not */ if (overflow(cost[a], pi[i] - pi[j])) { ret = 2; goto done; } lambda = cost[a] + (pi[i] - pi[j]); if (x[a] >= low[a] && lambda < 0) if (delta == 0 || delta > - lambda) delta = - lambda; } } if (delta == 0) { /* there is no feasible circulation */ ret = 1; goto done; } /* increase potentials of all unlabelled nodes */ for (i = 1; i <= nv; i++) { if (link[i] == 0) { if (overflow(pi[i], delta)) { ret = 2; goto done; } pi[i] += delta; } } goto loop; brkt: /* BREAKTHROUGH */ /* walk through arcs of the cycle (t, a, s, ..., t) found in the * reverse order and determine maximal change of the flow */ delta = 0; for (j = t;; j = i) { /* arc a immediately precedes node j in the cycle */ a = link[j]; if (head[a] == j) { /* a = i->j is a forward arc of the cycle */ i = tail[a]; lambda = cost[a] + (pi[i] - pi[j]); if (lambda > 0 && x[a] < low[a]) { /* x[a] may be increased until its lower bound */ temp = low[a] - x[a]; } else if (lambda <= 0 && x[a] < cap[a]) { /* x[a] may be increased until its upper bound */ temp = cap[a] - x[a]; } else xassert(a != a); } else if (tail[a] == j) { /* a = i<-j is a backward arc of the cycle */ i = head[a]; lambda = cost[a] + (pi[j] - pi[i]); if (lambda < 0 && x[a] > cap[a]) { /* x[a] may be decreased until its upper bound */ temp = x[a] - cap[a]; } else if (lambda >= 0 && x[a] > low[a]) { /* x[a] may be decreased until its lower bound */ temp = x[a] - low[a]; } else xassert(a != a); } else xassert(a != a); if (delta == 0 || delta > temp) delta = temp; /* check for end of the cycle */ if (i == t) break; } xassert(delta > 0); /* increase the flow along the cycle */ for (j = t;; j = i) { /* arc a immediately precedes node j in the cycle */ a = link[j]; if (head[a] == j) { /* a = i->j is a forward arc of the cycle */ i = tail[a]; /* overflow cannot occur */ x[a] += delta; } else if (tail[a] == j) { /* a = i<-j is a backward arc of the cycle */ i = head[a]; /* overflow cannot occur */ x[a] -= delta; } else xassert(a != a); /* check for end of the cycle */ if (i == t) break; } goto loop; done: /* free working arrays */ xfree(ptr); xfree(arc); xfree(link); xfree(list); return ret; } /* eof */