/* wclique1.c (maximum weight clique, greedy heuristic) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2012-2018 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "wclique1.h" /*********************************************************************** * NAME * * wclique1 - find maximum weight clique with greedy heuristic * * SYNOPSIS * * #include "wclique1.h" * int wclique1(int n, const double w[], * int (*func)(void *info, int i, int ind[]), void *info, int c[]); * * DESCRIPTION * * The routine wclique1 implements a sequential greedy heuristic to * find maximum weight clique in a given (undirected) graph G = (V, E). * * The parameter n specifies the number of vertices |V| in the graph, * n >= 0. * * The array w specifies vertex weights in locations w[i], i = 1,...,n. * All weights must be non-negative. * * The formal routine func specifies the graph. For a given vertex i, * 1 <= i <= n, it stores indices of all vertices adjacent to vertex i * in locations ind[1], ..., ind[deg], where deg is the degree of * vertex i, 0 <= deg < n, returned on exit. Note that self-loops and * multiple edges are not allowed. * * The parameter info is a cookie passed to the routine func. * * On exit the routine wclique1 stores vertex indices included in * the clique found to locations c[1], ..., c[size], where size is the * clique size returned by the routine, 0 <= size <= n. * * RETURNS * * The routine wclique1 returns the size of the clique found. */ struct vertex { int i; double cw; }; static int CDECL fcmp(const void *xx, const void *yy) { const struct vertex *x = xx, *y = yy; if (x->cw > y->cw) return -1; if (x->cw < y->cw) return +1; return 0; } int wclique1(int n, const double w[], int (*func)(void *info, int i, int ind[]), void *info, int c[]) { struct vertex *v_list; int deg, c_size, d_size, i, j, k, kk, l, *ind, *c_list, *d_list, size = 0; double c_wght, d_wght, *sw, best = 0.0; char *d_flag, *skip; /* perform sanity checks */ xassert(n >= 0); for (i = 1; i <= n; i++) xassert(w[i] >= 0.0); /* if the graph is empty, nothing to do */ if (n == 0) goto done; /* allocate working arrays */ ind = xcalloc(1+n, sizeof(int)); v_list = xcalloc(1+n, sizeof(struct vertex)); c_list = xcalloc(1+n, sizeof(int)); d_list = xcalloc(1+n, sizeof(int)); d_flag = xcalloc(1+n, sizeof(char)); skip = xcalloc(1+n, sizeof(char)); sw = xcalloc(1+n, sizeof(double)); /* build the vertex list */ for (i = 1; i <= n; i++) { v_list[i].i = i; /* compute the cumulative weight of each vertex i, which is * cw[i] = w[i] + sum{j : (i,j) in E} w[j] */ v_list[i].cw = w[i]; deg = func(info, i, ind); xassert(0 <= deg && deg < n); for (k = 1; k <= deg; k++) { j = ind[k]; xassert(1 <= j && j <= n && j != i); v_list[i].cw += w[j]; } } /* sort the vertex list to access vertices in descending order of * cumulative weights */ qsort(&v_list[1], n, sizeof(struct vertex), fcmp); /* initially all vertices are unmarked */ memset(&skip[1], 0, sizeof(char) * n); /* clear flags of all vertices */ memset(&d_flag[1], 0, sizeof(char) * n); /* look through all vertices of the graph */ for (l = 1; l <= n; l++) { /* take vertex i */ i = v_list[l].i; /* if this vertex was already included in one of previosuly * constructed cliques, skip it */ if (skip[i]) continue; /* use vertex i as the initial clique vertex */ c_size = 1; /* size of current clique */ c_list[1] = i; /* list of vertices in current clique */ c_wght = w[i]; /* weight of current clique */ /* determine the candidate set D = { j : (i,j) in E } */ d_size = func(info, i, d_list); xassert(0 <= d_size && d_size < n); d_wght = 0.0; /* weight of set D */ for (k = 1; k <= d_size; k++) { j = d_list[k]; xassert(1 <= j && j <= n && j != i); xassert(!d_flag[j]); d_flag[j] = 1; d_wght += w[j]; } /* check an upper bound to the final clique weight */ if (c_wght + d_wght < best + 1e-5 * (1.0 + fabs(best))) { /* skip constructing the current clique */ goto next; } /* compute the summary weight of each vertex i in D, which is * sw[i] = w[i] + sum{j in D and (i,j) in E} w[j] */ for (k = 1; k <= d_size; k++) { i = d_list[k]; sw[i] = w[i]; /* consider vertices adjacent to vertex i */ deg = func(info, i, ind); xassert(0 <= deg && deg < n); for (kk = 1; kk <= deg; kk++) { j = ind[kk]; xassert(1 <= j && j <= n && j != i); if (d_flag[j]) sw[i] += w[j]; } } /* grow the current clique by adding vertices from D */ while (d_size > 0) { /* check an upper bound to the final clique weight */ if (c_wght + d_wght < best + 1e-5 * (1.0 + fabs(best))) { /* skip constructing the current clique */ goto next; } /* choose vertex i in D having maximal summary weight */ i = d_list[1]; for (k = 2; k <= d_size; k++) { j = d_list[k]; if (sw[i] < sw[j]) i = j; } /* include vertex i in the current clique */ c_size++; c_list[c_size] = i; c_wght += w[i]; /* remove all vertices not adjacent to vertex i, including * vertex i itself, from the candidate set D */ deg = func(info, i, ind); xassert(0 <= deg && deg < n); for (k = 1; k <= deg; k++) { j = ind[k]; xassert(1 <= j && j <= n && j != i); /* vertex j is adjacent to vertex i */ if (d_flag[j]) { xassert(d_flag[j] == 1); /* mark vertex j to keep it in D */ d_flag[j] = 2; } } kk = d_size, d_size = 0; for (k = 1; k <= kk; k++) { j = d_list[k]; if (d_flag[j] == 1) { /* remove vertex j from D */ d_flag[j] = 0; d_wght -= w[j]; } else if (d_flag[j] == 2) { /* keep vertex j in D */ d_list[++d_size] = j; d_flag[j] = 1; } else xassert(d_flag != d_flag); } } /* the current clique has been completely constructed */ if (best < c_wght) { best = c_wght; size = c_size; xassert(1 <= size && size <= n); memcpy(&c[1], &c_list[1], size * sizeof(int)); } next: /* mark the current clique vertices in order not to use them * as initial vertices anymore */ for (k = 1; k <= c_size; k++) skip[c_list[k]] = 1; /* set D can be non-empty, so clean up vertex flags */ for (k = 1; k <= d_size; k++) d_flag[d_list[k]] = 0; } /* free working arrays */ xfree(ind); xfree(v_list); xfree(c_list); xfree(d_list); xfree(d_flag); xfree(skip); xfree(sw); done: /* return to the calling program */ return size; } /**********************************************************************/ #ifdef GLP_TEST #include "glpk.h" #include "rng.h" typedef struct { double w; } v_data; #define weight(v) (((v_data *)((v)->data))->w) glp_graph *G; char *flag; int func(void *info, int i, int ind[]) { glp_arc *e; int j, k, deg = 0; xassert(info == NULL); xassert(1 <= i && i <= G->nv); /* look through incoming arcs */ for (e = G->v[i]->in; e != NULL; e = e->h_next) { j = e->tail->i; /* j->i */ if (j != i && !flag[j]) ind[++deg] = j, flag[j] = 1; } /* look through outgoing arcs */ for (e = G->v[i]->out; e != NULL; e = e->t_next) { j = e->head->i; /* i->j */ if (j != i && !flag[j]) ind[++deg] = j, flag[j] = 1; } /* clear the flag array */ xassert(deg < G->nv); for (k = 1; k <= deg; k++) flag[ind[k]] = 0; return deg; } int main(int argc, char *argv[]) { RNG *rand; int i, k, kk, size, *c, *ind, deg; double *w, sum, t; /* read graph in DIMACS format */ G = glp_create_graph(sizeof(v_data), 0); xassert(argc == 2); xassert(glp_read_ccdata(G, offsetof(v_data, w), argv[1]) == 0); /* print the number of connected components */ xprintf("nc = %d\n", glp_weak_comp(G, -1)); /* assign random weights unformly distributed in [1,100] */ w = xcalloc(1+G->nv, sizeof(double)); rand = rng_create_rand(); for (i = 1; i <= G->nv; i++) #if 0 w[i] = weight(G->v[i]) = 1.0; #else w[i] = weight(G->v[i]) = rng_unif_rand(rand, 100) + 1; #endif /* write graph in DIMACS format */ xassert(glp_write_ccdata(G, offsetof(v_data, w), "graph") == 0); /* find maximum weight clique */ c = xcalloc(1+G->nv, sizeof(int)); flag = xcalloc(1+G->nv, sizeof(char)); memset(&flag[1], 0, G->nv); t = xtime(); size = wclique1(G->nv, w, func, NULL, c); xprintf("Time used: %.1f s\n", xdifftime(xtime(), t)); /* check the clique found */ ind = xcalloc(1+G->nv, sizeof(int)); for (k = 1; k <= size; k++) { i = c[k]; deg = func(NULL, i, ind); for (kk = 1; kk <= size; kk++) flag[c[kk]] = 1; flag[i] = 0; for (kk = 1; kk <= deg; kk++) flag[ind[kk]] = 0; for (kk = 1; kk <= size; kk++) xassert(flag[c[kk]] == 0); } /* compute the clique weight */ sum = 0.0; for (i = 1; i <= size; i++) sum += w[c[i]]; xprintf("size = %d; sum = %g\n", size, sum); return 0; } #endif /* eof */