/* spxlp.c */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2015 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "spxlp.h" /*********************************************************************** * spx_factorize - compute factorization of current basis matrix * * This routine computes factorization of the current basis matrix B. * * If the factorization has been successfully computed, the routine * validates it and returns zero. Otherwise, the routine invalidates * the factorization and returns the code provided by the factorization * driver (bfd_factorize). */ static int jth_col(void *info, int j, int ind[], double val[]) { /* provide column B[j] */ SPXLP *lp = info; int m = lp->m; int *A_ptr = lp->A_ptr; int *head = lp->head; int k, ptr, len; xassert(1 <= j && j <= m); k = head[j]; /* x[k] = xB[j] */ ptr = A_ptr[k]; len = A_ptr[k+1] - ptr; memcpy(&ind[1], &lp->A_ind[ptr], len * sizeof(int)); memcpy(&val[1], &lp->A_val[ptr], len * sizeof(double)); return len; } int spx_factorize(SPXLP *lp) { int ret; ret = bfd_factorize(lp->bfd, lp->m, jth_col, lp); lp->valid = (ret == 0); return ret; } /*********************************************************************** * spx_eval_beta - compute current values of basic variables * * This routine computes vector beta = (beta[i]) of current values of * basic variables xB = (xB[i]). (Factorization of the current basis * matrix should be valid.) * * First the routine computes a modified vector of right-hand sides: * * n-m * y = b - N * f = b - sum N[j] * f[j], * j=1 * * where b = (b[i]) is the original vector of right-hand sides, N is * a matrix composed from columns of the original constraint matrix A, * which (columns) correspond to non-basic variables, f = (f[j]) is the * vector of active bounds of non-basic variables xN = (xN[j]), * N[j] = A[k] is a column of matrix A corresponding to non-basic * variable xN[j] = x[k], f[j] is current active bound lN[j] = l[k] or * uN[j] = u[k] of non-basic variable xN[j] = x[k]. The matrix-vector * product N * f is computed as a linear combination of columns of N, * so if f[j] = 0, column N[j] can be skipped. * * Then the routine performs FTRAN to compute the vector beta: * * beta = inv(B) * y. * * On exit the routine stores components of the vector beta to array * locations beta[1], ..., beta[m]. */ void spx_eval_beta(SPXLP *lp, double beta[/*1+m*/]) { int m = lp->m; int n = lp->n; int *A_ptr = lp->A_ptr; int *A_ind = lp->A_ind; double *A_val = lp->A_val; double *b = lp->b; double *l = lp->l; double *u = lp->u; int *head = lp->head; char *flag = lp->flag; int j, k, ptr, end; double fj, *y; /* compute y = b - N * xN */ /* y := b */ y = beta; memcpy(&y[1], &b[1], m * sizeof(double)); /* y := y - N * f */ for (j = 1; j <= n-m; j++) { k = head[m+j]; /* x[k] = xN[j] */ /* f[j] := active bound of xN[j] */ fj = flag[j] ? u[k] : l[k]; if (fj == 0.0 || fj == -DBL_MAX) { /* either xN[j] has zero active bound or it is unbounded; * in the latter case its value is assumed to be zero */ continue; } /* y := y - N[j] * f[j] */ ptr = A_ptr[k]; end = A_ptr[k+1]; for (; ptr < end; ptr++) y[A_ind[ptr]] -= A_val[ptr] * fj; } /* compute beta = inv(B) * y */ xassert(lp->valid); bfd_ftran(lp->bfd, beta); return; } /*********************************************************************** * spx_eval_obj - compute current value of objective function * * This routine computes the value of the objective function in the * current basic solution: * * z = cB'* beta + cN'* f + c[0] = * * m n-m * = sum cB[i] * beta[i] + sum cN[j] * f[j] + c[0], * i=1 j=1 * * where cB = (cB[i]) is the vector of objective coefficients at basic * variables, beta = (beta[i]) is the vector of current values of basic * variables, cN = (cN[j]) is the vector of objective coefficients at * non-basic variables, f = (f[j]) is the vector of current active * bounds of non-basic variables, c[0] is the constant term of the * objective function. * * It as assumed that components of the vector beta are stored in the * array locations beta[1], ..., beta[m]. */ double spx_eval_obj(SPXLP *lp, const double beta[/*1+m*/]) { int m = lp->m; int n = lp->n; double *c = lp->c; double *l = lp->l; double *u = lp->u; int *head = lp->head; char *flag = lp->flag; int i, j, k; double fj, z; /* compute z = cB'* beta + cN'* f + c0 */ /* z := c0 */ z = c[0]; /* z := z + cB'* beta */ for (i = 1; i <= m; i++) { k = head[i]; /* x[k] = xB[i] */ z += c[k] * beta[i]; } /* z := z + cN'* f */ for (j = 1; j <= n-m; j++) { k = head[m+j]; /* x[k] = xN[j] */ /* f[j] := active bound of xN[j] */ fj = flag[j] ? u[k] : l[k]; if (fj == 0.0 || fj == -DBL_MAX) { /* either xN[j] has zero active bound or it is unbounded; * in the latter case its value is assumed to be zero */ continue; } z += c[k] * fj; } return z; } /*********************************************************************** * spx_eval_pi - compute simplex multipliers in current basis * * This routine computes vector pi = (pi[i]) of simplex multipliers in * the current basis. (Factorization of the current basis matrix should * be valid.) * * The vector pi is computed by performing BTRAN: * * pi = inv(B') * cB, * * where cB = (cB[i]) is the vector of objective coefficients at basic * variables xB = (xB[i]). * * On exit components of vector pi are stored in the array locations * pi[1], ..., pi[m]. */ void spx_eval_pi(SPXLP *lp, double pi[/*1+m*/]) { int m = lp->m; double *c = lp->c; int *head = lp->head; int i; double *cB; /* construct cB */ cB = pi; for (i = 1; i <= m; i++) cB[i] = c[head[i]]; /* compute pi = inv(B) * cB */ bfd_btran(lp->bfd, pi); return; } /*********************************************************************** * spx_eval_dj - compute reduced cost of j-th non-basic variable * * This routine computes reduced cost d[j] of non-basic variable * xN[j] = x[k], 1 <= j <= n-m, in the current basic solution: * * d[j] = c[k] - A'[k] * pi, * * where c[k] is the objective coefficient at x[k], A[k] is k-th column * of the constraint matrix, pi is the vector of simplex multipliers in * the current basis. * * It as assumed that components of the vector pi are stored in the * array locations pi[1], ..., pi[m]. */ double spx_eval_dj(SPXLP *lp, const double pi[/*1+m*/], int j) { int m = lp->m; int n = lp->n; int *A_ptr = lp->A_ptr; int *A_ind = lp->A_ind; double *A_val = lp->A_val; int k, ptr, end; double dj; xassert(1 <= j && j <= n-m); k = lp->head[m+j]; /* x[k] = xN[j] */ /* dj := c[k] */ dj = lp->c[k]; /* dj := dj - A'[k] * pi */ ptr = A_ptr[k]; end = A_ptr[k+1]; for (; ptr < end; ptr++) dj -= A_val[ptr] * pi[A_ind[ptr]]; return dj; } /*********************************************************************** * spx_eval_tcol - compute j-th column of simplex table * * This routine computes j-th column of the current simplex table * T = (T[i,j]) = - inv(B) * N, 1 <= j <= n-m. (Factorization of the * current basis matrix should be valid.) * * The simplex table column is computed by performing FTRAN: * * tcol = - inv(B) * N[j], * * where B is the current basis matrix, N[j] = A[k] is a column of the * constraint matrix corresponding to non-basic variable xN[j] = x[k]. * * On exit components of the simplex table column are stored in the * array locations tcol[1], ... tcol[m]. */ void spx_eval_tcol(SPXLP *lp, int j, double tcol[/*1+m*/]) { int m = lp->m; int n = lp->n; int *A_ptr = lp->A_ptr; int *A_ind = lp->A_ind; double *A_val = lp->A_val; int *head = lp->head; int i, k, ptr, end; xassert(1 <= j && j <= n-m); k = head[m+j]; /* x[k] = xN[j] */ /* compute tcol = - inv(B) * N[j] */ for (i = 1; i <= m; i++) tcol[i] = 0.0; ptr = A_ptr[k]; end = A_ptr[k+1]; for (; ptr < end; ptr++) tcol[A_ind[ptr]] = -A_val[ptr]; bfd_ftran(lp->bfd, tcol); return; } /*********************************************************************** * spx_eval_rho - compute i-th row of basis matrix inverse * * This routine computes i-th row of the matrix inv(B), where B is * the current basis matrix, 1 <= i <= m. (Factorization of the current * basis matrix should be valid.) * * The inverse row is computed by performing BTRAN: * * rho = inv(B') * e[i], * * where e[i] is i-th column of unity matrix. * * On exit components of the row are stored in the array locations * row[1], ..., row[m]. */ void spx_eval_rho(SPXLP *lp, int i, double rho[/*1+m*/]) { int m = lp->m; int j; xassert(1 <= i && i <= m); /* compute rho = inv(B') * e[i] */ for (j = 1; j <= m; j++) rho[j] = 0.0; rho[i] = 1.0; bfd_btran(lp->bfd, rho); return; } #if 1 /* 31/III-2016 */ void spx_eval_rho_s(SPXLP *lp, int i, FVS *rho) { /* sparse version of spx_eval_rho */ int m = lp->m; xassert(1 <= i && i <= m); /* compute rho = inv(B') * e[i] */ xassert(rho->n == m); fvs_clear_vec(rho); rho->nnz = 1; rho->ind[1] = i; rho->vec[i] = 1.0; bfd_btran_s(lp->bfd, rho); return; } #endif /*********************************************************************** * spx_eval_tij - compute element T[i,j] of simplex table * * This routine computes element T[i,j] of the current simplex table * T = - inv(B) * N, 1 <= i <= m, 1 <= j <= n-m, with the following * formula: * * T[i,j] = - N'[j] * rho, (1) * * where N[j] = A[k] is a column of the constraint matrix corresponding * to non-basic variable xN[j] = x[k], rho is i-th row of the inverse * matrix inv(B). * * It as assumed that components of the inverse row rho = (rho[j]) are * stored in the array locations rho[1], ..., rho[m]. */ double spx_eval_tij(SPXLP *lp, const double rho[/*1+m*/], int j) { int m = lp->m; int n = lp->n; int *A_ptr = lp->A_ptr; int *A_ind = lp->A_ind; double *A_val = lp->A_val; int k, ptr, end; double tij; xassert(1 <= j && j <= n-m); k = lp->head[m+j]; /* x[k] = xN[j] */ /* compute t[i,j] = - N'[j] * pi */ tij = 0.0; ptr = A_ptr[k]; end = A_ptr[k+1]; for (; ptr < end; ptr++) tij -= A_val[ptr] * rho[A_ind[ptr]]; return tij; } /*********************************************************************** * spx_eval_trow - compute i-th row of simplex table * * This routine computes i-th row of the current simplex table * T = (T[i,j]) = - inv(B) * N, 1 <= i <= m. * * Elements of the row T[i] = (T[i,j]), j = 1, ..., n-m, are computed * directly with the routine spx_eval_tij. * * The vector rho = (rho[j]), which is i-th row of the basis inverse * inv(B), should be previously computed with the routine spx_eval_rho. * It is assumed that elements of this vector are stored in the array * locations rho[1], ..., rho[m]. * * On exit components of the simplex table row are stored in the array * locations trow[1], ... trow[n-m]. * * NOTE: For testing/debugging only. */ void spx_eval_trow(SPXLP *lp, const double rho[/*1+m*/], double trow[/*1+n-m*/]) { int m = lp->m; int n = lp->n; int j; for (j = 1; j <= n-m; j++) trow[j] = spx_eval_tij(lp, rho, j); return; } /*********************************************************************** * spx_update_beta - update values of basic variables * * This routine updates the vector beta = (beta[i]) of values of basic * variables xB = (xB[i]) for the adjacent basis. * * On entry to the routine components of the vector beta in the current * basis should be placed in array locations beta[1], ..., beta[m]. * * The parameter 1 <= p <= m specifies basic variable xB[p] which * becomes non-basic variable xN[q] in the adjacent basis. The special * case p < 0 means that non-basic variable xN[q] goes from its current * active bound to opposite one in the adjacent basis. * * If the flag p_flag is set, the active bound of xB[p] in the adjacent * basis is set to its upper bound. (In this case xB[p] should have its * upper bound and should not be fixed.) * * The parameter 1 <= q <= n-m specifies non-basic variable xN[q] which * becomes basic variable xB[p] in the adjacent basis (if 1 <= p <= m), * or goes to its opposite bound (if p < 0). (In the latter case xN[q] * should have both lower and upper bounds and should not be fixed.) * * It is assumed that the array tcol contains elements of q-th (pivot) * column T[q] of the simple table in locations tcol[1], ..., tcol[m]. * (This column should be computed for the current basis.) * * First, the routine determines the increment of basic variable xB[p] * in the adjacent basis (but only if 1 <= p <= m): * * ( - beta[p], if -inf < xB[p] < +inf * ( * delta xB[p] = { lB[p] - beta[p], if p_flag = 0 * ( * ( uB[p] - beta[p], if p_flag = 1 * * where beta[p] is the value of xB[p] in the current basis, lB[p] and * uB[p] are its lower and upper bounds. Then, the routine determines * the increment of non-basic variable xN[q] in the adjacent basis: * * ( delta xB[p] / T[p,q], if 1 <= p <= m * ( * delta xN[q] = { uN[q] - lN[q], if p < 0 and f[q] = lN[q] * ( * ( lN[q] - uN[q], if p < 0 and f[q] = uN[q] * * where T[p,q] is the pivot element of the simplex table, f[q] is the * active bound of xN[q] in the current basis. * * If 1 <= p <= m, in the adjacent basis xN[q] becomes xB[p], so: * * new beta[p] = f[q] + delta xN[q]. * * Values of other basic variables xB[i] for 1 <= i <= m, i != p, are * updated as follows: * * new beta[i] = beta[i] + T[i,q] * delta xN[q]. * * On exit the routine stores updated components of the vector beta to * the same locations, where the input vector beta was stored. */ void spx_update_beta(SPXLP *lp, double beta[/*1+m*/], int p, int p_flag, int q, const double tcol[/*1+m*/]) { int m = lp->m; int n = lp->n; double *l = lp->l; double *u = lp->u; int *head = lp->head; char *flag = lp->flag; int i, k; double delta_p, delta_q; if (p < 0) { /* special case: xN[q] goes to its opposite bound */ xassert(1 <= q && q <= n-m); /* xN[q] should be double-bounded variable */ k = head[m+q]; /* x[k] = xN[q] */ xassert(l[k] != -DBL_MAX && u[k] != +DBL_MAX && l[k] != u[k]); /* determine delta xN[q] */ if (flag[q]) { /* xN[q] goes from its upper bound to its lower bound */ delta_q = l[k] - u[k]; } else { /* xN[q] goes from its lower bound to its upper bound */ delta_q = u[k] - l[k]; } } else { /* xB[p] leaves the basis, xN[q] enters the basis */ xassert(1 <= p && p <= m); xassert(1 <= q && q <= n-m); /* determine delta xB[p] */ k = head[p]; /* x[k] = xB[p] */ if (p_flag) { /* xB[p] goes to its upper bound */ xassert(l[k] != u[k] && u[k] != +DBL_MAX); delta_p = u[k] - beta[p]; } else if (l[k] == -DBL_MAX) { /* unbounded xB[p] becomes non-basic (unusual case) */ xassert(u[k] == +DBL_MAX); delta_p = 0.0 - beta[p]; } else { /* xB[p] goes to its lower bound or becomes fixed */ delta_p = l[k] - beta[p]; } /* determine delta xN[q] */ delta_q = delta_p / tcol[p]; /* compute new beta[p], which is the value of xN[q] in the * adjacent basis */ k = head[m+q]; /* x[k] = xN[q] */ if (flag[q]) { /* xN[q] has its upper bound active */ xassert(l[k] != u[k] && u[k] != +DBL_MAX); beta[p] = u[k] + delta_q; } else if (l[k] == -DBL_MAX) { /* xN[q] is non-basic unbounded variable */ xassert(u[k] == +DBL_MAX); beta[p] = 0.0 + delta_q; } else { /* xN[q] has its lower bound active or is fixed (latter * case is unusual) */ beta[p] = l[k] + delta_q; } } /* compute new beta[i] for all i != p */ for (i = 1; i <= m; i++) { if (i != p) beta[i] += tcol[i] * delta_q; } return; } #if 1 /* 30/III-2016 */ void spx_update_beta_s(SPXLP *lp, double beta[/*1+m*/], int p, int p_flag, int q, const FVS *tcol) { /* sparse version of spx_update_beta */ int m = lp->m; int n = lp->n; double *l = lp->l; double *u = lp->u; int *head = lp->head; char *flag = lp->flag; int nnz = tcol->nnz; int *ind = tcol->ind; double *vec = tcol->vec; int i, k; double delta_p, delta_q; xassert(tcol->n == m); if (p < 0) { /* special case: xN[q] goes to its opposite bound */ #if 0 /* 11/VI-2017 */ /* FIXME: not tested yet */ xassert(0); #endif xassert(1 <= q && q <= n-m); /* xN[q] should be double-bounded variable */ k = head[m+q]; /* x[k] = xN[q] */ xassert(l[k] != -DBL_MAX && u[k] != +DBL_MAX && l[k] != u[k]); /* determine delta xN[q] */ if (flag[q]) { /* xN[q] goes from its upper bound to its lower bound */ delta_q = l[k] - u[k]; } else { /* xN[q] goes from its lower bound to its upper bound */ delta_q = u[k] - l[k]; } } else { /* xB[p] leaves the basis, xN[q] enters the basis */ xassert(1 <= p && p <= m); xassert(1 <= q && q <= n-m); /* determine delta xB[p] */ k = head[p]; /* x[k] = xB[p] */ if (p_flag) { /* xB[p] goes to its upper bound */ xassert(l[k] != u[k] && u[k] != +DBL_MAX); delta_p = u[k] - beta[p]; } else if (l[k] == -DBL_MAX) { /* unbounded xB[p] becomes non-basic (unusual case) */ xassert(u[k] == +DBL_MAX); delta_p = 0.0 - beta[p]; } else { /* xB[p] goes to its lower bound or becomes fixed */ delta_p = l[k] - beta[p]; } /* determine delta xN[q] */ delta_q = delta_p / vec[p]; /* compute new beta[p], which is the value of xN[q] in the * adjacent basis */ k = head[m+q]; /* x[k] = xN[q] */ if (flag[q]) { /* xN[q] has its upper bound active */ xassert(l[k] != u[k] && u[k] != +DBL_MAX); beta[p] = u[k] + delta_q; } else if (l[k] == -DBL_MAX) { /* xN[q] is non-basic unbounded variable */ xassert(u[k] == +DBL_MAX); beta[p] = 0.0 + delta_q; } else { /* xN[q] has its lower bound active or is fixed (latter * case is unusual) */ beta[p] = l[k] + delta_q; } } /* compute new beta[i] for all i != p */ for (k = 1; k <= nnz; k++) { i = ind[k]; if (i != p) beta[i] += vec[i] * delta_q; } return; } #endif /*********************************************************************** * spx_update_d - update reduced costs of non-basic variables * * This routine updates the vector d = (d[j]) of reduced costs of * non-basic variables xN = (xN[j]) for the adjacent basis. * * On entry to the routine components of the vector d in the current * basis should be placed in locations d[1], ..., d[n-m]. * * The parameter 1 <= p <= m specifies basic variable xB[p] which * becomes non-basic variable xN[q] in the adjacent basis. * * The parameter 1 <= q <= n-m specified non-basic variable xN[q] which * becomes basic variable xB[p] in the adjacent basis. * * It is assumed that the array trow contains elements of p-th (pivot) * row T'[p] of the simplex table in locations trow[1], ..., trow[n-m]. * It is also assumed that the array tcol contains elements of q-th * (pivot) column T[q] of the simple table in locations tcol[1], ..., * tcol[m]. (These row and column should be computed for the current * basis.) * * First, the routine computes more accurate reduced cost d[q] in the * current basis using q-th column of the simplex table: * * n-m * d[q] = cN[q] + sum t[i,q] * cB[i], * i=1 * * where cN[q] and cB[i] are objective coefficients at variables xN[q] * and xB[i], resp. The routine also computes the relative error: * * e = |d[q] - d'[q]| / (1 + |d[q]|), * * where d'[q] is the reduced cost of xN[q] on entry to the routine, * and returns e on exit. (If e happens to be large enough, the calling * program may compute the reduced costs directly, since other reduced * costs also may be inaccurate.) * * In the adjacent basis xB[p] becomes xN[q], so: * * new d[q] = d[q] / T[p,q], * * where T[p,q] is the pivot element of the simplex table (it is taken * from column T[q] as more accurate). Reduced costs of other non-basic * variables xN[j] for 1 <= j <= n-m, j != q, are updated as follows: * * new d[j] = d[j] + T[p,j] * new d[q]. * * On exit the routine stores updated components of the vector d to the * same locations, where the input vector d was stored. */ double spx_update_d(SPXLP *lp, double d[/*1+n-m*/], int p, int q, const double trow[/*1+n-m*/], const double tcol[/*1+m*/]) { int m = lp->m; int n = lp->n; double *c = lp->c; int *head = lp->head; int i, j, k; double dq, e; xassert(1 <= p && p <= m); xassert(1 <= q && q <= n); /* compute d[q] in current basis more accurately */ k = head[m+q]; /* x[k] = xN[q] */ dq = c[k]; for (i = 1; i <= m; i++) dq += tcol[i] * c[head[i]]; /* compute relative error in d[q] */ e = fabs(dq - d[q]) / (1.0 + fabs(dq)); /* compute new d[q], which is the reduced cost of xB[p] in the * adjacent basis */ d[q] = (dq /= tcol[p]); /* compute new d[j] for all j != q */ for (j = 1; j <= n-m; j++) { if (j != q) d[j] -= trow[j] * dq; } return e; } #if 1 /* 30/III-2016 */ double spx_update_d_s(SPXLP *lp, double d[/*1+n-m*/], int p, int q, const FVS *trow, const FVS *tcol) { /* sparse version of spx_update_d */ int m = lp->m; int n = lp->n; double *c = lp->c; int *head = lp->head; int trow_nnz = trow->nnz; int *trow_ind = trow->ind; double *trow_vec = trow->vec; int tcol_nnz = tcol->nnz; int *tcol_ind = tcol->ind; double *tcol_vec = tcol->vec; int i, j, k; double dq, e; xassert(1 <= p && p <= m); xassert(1 <= q && q <= n); xassert(trow->n == n-m); xassert(tcol->n == m); /* compute d[q] in current basis more accurately */ k = head[m+q]; /* x[k] = xN[q] */ dq = c[k]; for (k = 1; k <= tcol_nnz; k++) { i = tcol_ind[k]; dq += tcol_vec[i] * c[head[i]]; } /* compute relative error in d[q] */ e = fabs(dq - d[q]) / (1.0 + fabs(dq)); /* compute new d[q], which is the reduced cost of xB[p] in the * adjacent basis */ d[q] = (dq /= tcol_vec[p]); /* compute new d[j] for all j != q */ for (k = 1; k <= trow_nnz; k++) { j = trow_ind[k]; if (j != q) d[j] -= trow_vec[j] * dq; } return e; } #endif /*********************************************************************** * spx_change_basis - change current basis to adjacent one * * This routine changes the current basis to the adjacent one making * necessary changes in lp->head and lp->flag members. * * The parameters p, p_flag, and q have the same meaning as for the * routine spx_update_beta. */ void spx_change_basis(SPXLP *lp, int p, int p_flag, int q) { int m = lp->m; int n = lp->n; double *l = lp->l; double *u = lp->u; int *head = lp->head; char *flag = lp->flag; int k; if (p < 0) { /* special case: xN[q] goes to its opposite bound */ xassert(1 <= q && q <= n-m); /* xN[q] should be double-bounded variable */ k = head[m+q]; /* x[k] = xN[q] */ xassert(l[k] != -DBL_MAX && u[k] != +DBL_MAX && l[k] != u[k]); /* change active bound flag */ flag[q] = 1 - flag[q]; } else { /* xB[p] leaves the basis, xN[q] enters the basis */ xassert(1 <= p && p <= m); xassert(p_flag == 0 || p_flag == 1); xassert(1 <= q && q <= n-m); k = head[p]; /* xB[p] = x[k] */ if (p_flag) { /* xB[p] goes to its upper bound */ xassert(l[k] != u[k] && u[k] != +DBL_MAX); } /* swap xB[p] and xN[q] in the basis */ head[p] = head[m+q], head[m+q] = k; /* and set active bound flag for new xN[q] */ lp->flag[q] = p_flag; } return; } /*********************************************************************** * spx_update_invb - update factorization of basis matrix * * This routine updates factorization of the basis matrix B when i-th * column of B is replaced by k-th column of the constraint matrix A. * * The parameter 1 <= i <= m specifies the number of column of matrix B * to be replaced by a new column. * * The parameter 1 <= k <= n specifies the number of column of matrix A * to be used for replacement. * * If the factorization has been successfully updated, the routine * validates it and returns zero. Otherwise, the routine invalidates * the factorization and returns the code provided by the factorization * driver (bfd_update). */ int spx_update_invb(SPXLP *lp, int i, int k) { int m = lp->m; int n = lp->n; int *A_ptr = lp->A_ptr; int *A_ind = lp->A_ind; double *A_val = lp->A_val; int ptr, len, ret; xassert(1 <= i && i <= m); xassert(1 <= k && k <= n); ptr = A_ptr[k]; len = A_ptr[k+1] - ptr; ret = bfd_update(lp->bfd, i, len, &A_ind[ptr-1], &A_val[ptr-1]); lp->valid = (ret == 0); return ret; } /* eof */