/* spychuzc.c */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * Copyright (C) 2015-2018 Free Software Foundation, Inc. * Written by Andrew Makhorin . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "spychuzc.h" /*********************************************************************** * spy_chuzc_std - choose non-basic variable (dual textbook ratio test) * * This routine implements an improved dual textbook ratio test to * choose non-basic variable xN[q]. * * Current reduced costs of non-basic variables should be placed in the * array locations d[1], ..., d[n-m]. Note that d[j] is a value of dual * basic variable lambdaN[j] in the current basis. * #if 0 (* 14/III-2016 *) * The parameter s specifies the sign of bound violation for basic * variable xB[p] chosen: s = +1.0 means that xB[p] violates its lower * bound, so dual non-basic variable lambdaB[p] = lambda^+B[p] * increases, and s = -1.0 means that xB[p] violates its upper bound, * so dual non-basic variable lambdaB[p] = lambda^-B[p] decreases. * (Thus, the dual ray parameter theta = s * lambdaB[p] >= 0.) #else * The parameter r specifies the bound violation for basic variable * xB[p] chosen: * * r = lB[p] - beta[p] > 0 means that xB[p] violates its lower bound, * so dual non-basic variable lambdaB[p] = lambda^+B[p] increases; and * * r = uB[p] - beta[p] < 0 means that xB[p] violates its upper bound, * so dual non-basic variable lambdaB[p] = lambda^-B[p] decreases. * * (Note that r is the dual reduced cost of lambdaB[p].) #endif * * Elements of p-th simplex table row t[p] = (t[p,j]) corresponding * to basic variable xB[p] should be placed in the array locations * trow[1], ..., trow[n-m]. * * The parameter tol_piv specifies a tolerance for elements of the * simplex table row t[p]. If |t[p,j]| < tol_piv, dual basic variable * lambdaN[j] is skipped, i.e. it is assumed that it does not depend on * the dual ray parameter theta. * * The parameters tol and tol1 specify tolerances used to increase the * choice freedom by simulating an artificial degeneracy as follows. * If lambdaN[j] = lambda^+N[j] >= 0 and d[j] <= +delta[j], or if * lambdaN[j] = lambda^-N[j] <= 0 and d[j] >= -delta[j], where * delta[j] = tol + tol1 * |cN[j]|, cN[j] is objective coefficient at * xN[j], then it is assumed that reduced cost d[j] is equal to zero. * * The routine determines the index 1 <= q <= n-m of non-basic variable * xN[q], for which corresponding dual basic variable lambda^+N[j] or * lambda^-N[j] reaches its zero bound first on increasing the dual ray * parameter theta, and returns p on exit. And if theta may increase * unlimitedly, the routine returns zero. */ int spy_chuzc_std(SPXLP *lp, const double d[/*1+n-m*/], #if 0 /* 14/III-2016 */ double s, const double trow[/*1+n-m*/], double tol_piv, #else double r, const double trow[/*1+n-m*/], double tol_piv, #endif double tol, double tol1) { int m = lp->m; int n = lp->n; double *c = lp->c; double *l = lp->l; double *u = lp->u; int *head = lp->head; char *flag = lp->flag; int j, k, q; double alfa, biga, delta, teta, teta_min; #if 0 /* 14/III-2016 */ xassert(s == +1.0 || s == -1.0); #else double s; xassert(r != 0.0); s = (r > 0.0 ? +1.0 : -1.0); #endif /* nothing is chosen so far */ q = 0, teta_min = DBL_MAX, biga = 0.0; /* walk thru the list of non-basic variables */ for (j = 1; j <= n-m; j++) { k = head[m+j]; /* x[k] = xN[j] */ /* if xN[j] is fixed variable, skip it */ if (l[k] == u[k]) continue; alfa = s * trow[j]; if (alfa >= +tol_piv && !flag[j]) { /* xN[j] is either free or has its lower bound active, so * lambdaN[j] = d[j] >= 0 decreases down to zero */ delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]); /* determine theta on which lambdaN[j] reaches zero */ teta = (d[j] < +delta ? 0.0 : d[j] / alfa); } else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j])) { /* xN[j] is either free or has its upper bound active, so * lambdaN[j] = d[j] <= 0 increases up to zero */ delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]); /* determine theta on which lambdaN[j] reaches zero */ teta = (d[j] > -delta ? 0.0 : d[j] / alfa); } else { /* lambdaN[j] cannot reach zero on increasing theta */ continue; } /* choose non-basic variable xN[q] by corresponding dual basic * variable lambdaN[q] for which theta is minimal */ xassert(teta >= 0.0); alfa = (alfa >= 0.0 ? +alfa : -alfa); if (teta_min > teta || (teta_min == teta && biga < alfa)) q = j, teta_min = teta, biga = alfa; } return q; } /*********************************************************************** * spy_chuzc_harris - choose non-basic var. (dual Harris' ratio test) * * This routine implements dual Harris' ratio test to choose non-basic * variable xN[q]. * * All the parameters, except tol and tol1, as well as the returned * value have the same meaning as for the routine spx_chuzr_std (see * above). * * The parameters tol and tol1 specify tolerances on zero bound * violations for reduced costs of non-basic variables. For reduced * cost d[j] the tolerance is delta[j] = tol + tol1 |cN[j]|, where * cN[j] is objective coefficient at non-basic variable xN[j]. */ int spy_chuzc_harris(SPXLP *lp, const double d[/*1+n-m*/], #if 0 /* 14/III-2016 */ double s, const double trow[/*1+n-m*/], double tol_piv, #else double r, const double trow[/*1+n-m*/], double tol_piv, #endif double tol, double tol1) { int m = lp->m; int n = lp->n; double *c = lp->c; double *l = lp->l; double *u = lp->u; int *head = lp->head; char *flag = lp->flag; int j, k, q; double alfa, biga, delta, teta, teta_min; #if 0 /* 14/III-2016 */ xassert(s == +1.0 || s == -1.0); #else double s; xassert(r != 0.0); s = (r > 0.0 ? +1.0 : -1.0); #endif /*--------------------------------------------------------------*/ /* first pass: determine teta_min for relaxed bounds */ /*--------------------------------------------------------------*/ teta_min = DBL_MAX; /* walk thru the list of non-basic variables */ for (j = 1; j <= n-m; j++) { k = head[m+j]; /* x[k] = xN[j] */ /* if xN[j] is fixed variable, skip it */ if (l[k] == u[k]) continue; alfa = s * trow[j]; if (alfa >= +tol_piv && !flag[j]) { /* xN[j] is either free or has its lower bound active, so * lambdaN[j] = d[j] >= 0 decreases down to zero */ delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]); /* determine theta on which lambdaN[j] reaches -delta */ teta = ((d[j] < 0.0 ? 0.0 : d[j]) + delta) / alfa; } else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j])) { /* xN[j] is either free or has its upper bound active, so * lambdaN[j] = d[j] <= 0 increases up to zero */ delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]); /* determine theta on which lambdaN[j] reaches +delta */ teta = ((d[j] > 0.0 ? 0.0 : d[j]) - delta) / alfa; } else { /* lambdaN[j] cannot reach zero on increasing theta */ continue; } xassert(teta >= 0.0); if (teta_min > teta) teta_min = teta; } /*--------------------------------------------------------------*/ /* second pass: choose non-basic variable xN[q] */ /*--------------------------------------------------------------*/ if (teta_min == DBL_MAX) { /* theta may increase unlimitedly */ q = 0; goto done; } /* nothing is chosen so far */ q = 0, biga = 0.0; /* walk thru the list of non-basic variables */ for (j = 1; j <= n-m; j++) { k = head[m+j]; /* x[k] = xN[j] */ /* if xN[j] is fixed variable, skip it */ if (l[k] == u[k]) continue; alfa = s * trow[j]; if (alfa >= +tol_piv && !flag[j]) { /* xN[j] is either free or has its lower bound active, so * lambdaN[j] = d[j] >= 0 decreases down to zero */ /* determine theta on which lambdaN[j] reaches zero */ teta = d[j] / alfa; } else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j])) { /* xN[j] is either free or has its upper bound active, so * lambdaN[j] = d[j] <= 0 increases up to zero */ /* determine theta on which lambdaN[j] reaches zero */ teta = d[j] / alfa; } else { /* lambdaN[j] cannot reach zero on increasing theta */ continue; } /* choose non-basic variable for which theta is not greater * than theta_min determined for relaxed bounds and which has * best (largest in magnitude) pivot */ alfa = (alfa >= 0.0 ? +alfa : -alfa); if (teta <= teta_min && biga < alfa) q = j, biga = alfa; } /* something must be chosen */ xassert(1 <= q && q <= n-m); done: return q; } #if 0 /* 23/III-2016 */ /*********************************************************************** * spy_eval_bp - determine dual objective function break-points * * This routine determines the dual objective function break-points. * * The parameters lp, d, r, trow, and tol_piv have the same meaning as * for the routine spx_chuzc_std (see above). * * On exit the routine stores the break-points determined to the array * elements bp[1], ..., bp[num], where 0 <= num <= n-m is the number of * break-points returned by the routine. * * The break-points stored in the array bp are ordered by ascending * the ray parameter teta >= 0. The break-points numbered 1, ..., num-1 * always correspond to non-basic non-fixed variables xN[j] of primal * LP having both lower and upper bounds while the last break-point * numbered num may correspond to a non-basic variable having only one * lower or upper bound, if such variable prevents further increasing * of the ray parameter teta. Besides, the routine includes in the * array bp only the break-points that correspond to positive increment * of the dual objective. */ static int CDECL fcmp(const void *v1, const void *v2) { const SPYBP *p1 = v1, *p2 = v2; if (p1->teta < p2->teta) return -1; else if (p1->teta > p2->teta) return +1; else return 0; } int spy_eval_bp(SPXLP *lp, const double d[/*1+n-m*/], double r, const double trow[/*1+n-m*/], double tol_piv, SPYBP bp[/*1+n-m*/]) { int m = lp->m; int n = lp->n; double *l = lp->l; double *u = lp->u; int *head = lp->head; char *flag = lp->flag; int j, j_max, k, t, nnn, num; double s, alfa, teta, teta_max, dz, v; xassert(r != 0.0); s = (r > 0.0 ? +1.0 : -1.0); /* build the list of all dual basic variables lambdaN[j] that * can reach zero on increasing the ray parameter teta >= 0 */ num = 0; /* walk thru the list of non-basic variables */ for (j = 1; j <= n-m; j++) { k = head[m+j]; /* x[k] = xN[j] */ /* if xN[j] is fixed variable, skip it */ if (l[k] == u[k]) continue; alfa = s * trow[j]; if (alfa >= +tol_piv && !flag[j]) { /* xN[j] is either free or has its lower bound active, so * lambdaN[j] = d[j] >= 0 decreases down to zero */ /* determine teta[j] on which lambdaN[j] reaches zero */ teta = (d[j] < 0.0 ? 0.0 : d[j] / alfa); } else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j])) { /* xN[j] is either free or has its upper bound active, so * lambdaN[j] = d[j] <= 0 increases up to zero */ /* determine teta[j] on which lambdaN[j] reaches zero */ teta = (d[j] > 0.0 ? 0.0 : d[j] / alfa); } else { /* lambdaN[j] cannot reach zero on increasing teta */ continue; } /* add lambdaN[j] to the list */ num++; bp[num].j = j; bp[num].teta = teta; } if (num == 0) { /* dual unboundedness */ goto done; } /* determine "blocking" dual basic variable lambdaN[j_max] that * prevents increasing teta more than teta_max */ j_max = 0, teta_max = DBL_MAX; for (t = 1; t <= num; t++) { j = bp[t].j; k = head[m+j]; /* x[k] = xN[j] */ if (l[k] == -DBL_MAX || u[k] == +DBL_MAX) { /* lambdaN[j] cannot intersect zero */ if (j_max == 0 || teta_max > bp[t].teta || (teta_max == bp[t].teta && fabs(trow[j_max]) < fabs(trow[j]))) j_max = j, teta_max = bp[t].teta; } } /* keep in the list only dual basic variables lambdaN[j] that * correspond to primal double-bounded variables xN[j] and whose * teta[j] is not greater than teta_max */ nnn = 0; for (t = 1; t <= num; t++) { j = bp[t].j; k = head[m+j]; /* x[k] = xN[j] */ if (l[k] != -DBL_MAX && u[k] != +DBL_MAX && bp[t].teta <= teta_max) { nnn++; bp[nnn].j = j; bp[nnn].teta = bp[t].teta; } } num = nnn; /* sort break-points by ascending teta[j] */ qsort(&bp[1], num, sizeof(SPYBP), fcmp); /* add lambdaN[j_max] to the end of the list */ if (j_max != 0) { xassert(num < n-m); num++; bp[num].j = j_max; bp[num].teta = teta_max; } /* compute increments of the dual objective at all break-points * (relative to its value at teta = 0) */ dz = 0.0; /* dual objective increment */ v = fabs(r); /* dual objective slope d zeta / d teta */ for (t = 1; t <= num; t++) { /* compute increment at current break-point */ dz += v * (bp[t].teta - (t == 1 ? 0.0 : bp[t-1].teta)); if (dz < 0.001) { /* break-point with non-positive increment reached */ num = t - 1; break; } bp[t].dz = dz; /* compute next slope on the right to current break-point */ if (t < num) { j = bp[t].j; k = head[m+j]; /* x[k] = xN[j] */ xassert(-DBL_MAX < l[k] && l[k] < u[k] && u[k] < +DBL_MAX); v -= fabs(trow[j]) * (u[k] - l[k]); } } done: return num; } #endif /*********************************************************************** * spy_ls_eval_bp - determine dual objective function break-points * * This routine determines the dual objective function break-points. * * The parameters lp, d, r, trow, and tol_piv have the same meaning as * for the routine spx_chuzc_std (see above). * * The routine stores the break-points determined to the array elements * bp[1], ..., bp[nbp] in *arbitrary* order, where 0 <= nbp <= n-m is * the number of break-points returned by the routine on exit. */ int spy_ls_eval_bp(SPXLP *lp, const double d[/*1+n-m*/], double r, const double trow[/*1+n-m*/], double tol_piv, SPYBP bp[/*1+n-m*/]) { int m = lp->m; int n = lp->n; double *l = lp->l; double *u = lp->u; int *head = lp->head; char *flag = lp->flag; int j, k, t, nnn, nbp; double s, alfa, teta, teta_max; xassert(r != 0.0); s = (r > 0.0 ? +1.0 : -1.0); /* build the list of all dual basic variables lambdaN[j] that * can reach zero on increasing the ray parameter teta >= 0 */ nnn = 0, teta_max = DBL_MAX; /* walk thru the list of non-basic variables */ for (j = 1; j <= n-m; j++) { k = head[m+j]; /* x[k] = xN[j] */ /* if xN[j] is fixed variable, skip it */ if (l[k] == u[k]) continue; alfa = s * trow[j]; if (alfa >= +tol_piv && !flag[j]) { /* xN[j] is either free or has its lower bound active, so * lambdaN[j] = d[j] >= 0 decreases down to zero */ /* determine teta[j] on which lambdaN[j] reaches zero */ teta = (d[j] < 0.0 ? 0.0 : d[j] / alfa); /* if xN[j] has no upper bound, lambdaN[j] cannot become * negative and thereby blocks further increasing teta */ if (u[k] == +DBL_MAX && teta_max > teta) teta_max = teta; } else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j])) { /* xN[j] is either free or has its upper bound active, so * lambdaN[j] = d[j] <= 0 increases up to zero */ /* determine teta[j] on which lambdaN[j] reaches zero */ teta = (d[j] > 0.0 ? 0.0 : d[j] / alfa); /* if xN[j] has no lower bound, lambdaN[j] cannot become * positive and thereby blocks further increasing teta */ if (l[k] == -DBL_MAX && teta_max > teta) teta_max = teta; } else { /* lambdaN[j] cannot reach zero on increasing teta */ continue; } /* add lambdaN[j] to the list */ nnn++; bp[nnn].j = j; bp[nnn].teta = teta; } /* remove from the list all dual basic variables lambdaN[j], for * which teta[j] > teta_max */ nbp = 0; for (t = 1; t <= nnn; t++) { if (bp[t].teta <= teta_max + 1e-6) { nbp++; bp[nbp].j = bp[t].j; bp[nbp].teta = bp[t].teta; } } return nbp; } /*********************************************************************** * spy_ls_select_bp - select and process dual objective break-points * * This routine selects a next portion of the dual objective function * break-points and processes them. * * On entry to the routine it is assumed that break-points bp[1], ..., * bp[num] are already processed, and slope is the dual objective slope * to the right of the last processed break-point bp[num]. (Initially, * when num = 0, slope should be specified as fabs(r), where r has the * same meaning as above.) * * The routine selects break-points among bp[num+1], ..., bp[nbp], for * which teta <= teta_lim, and moves these break-points to the array * elements bp[num+1], ..., bp[num1], where num <= num1 <= n-m is the * new number of processed break-points returned by the routine on * exit. Then the routine sorts these break-points by ascending teta * and computes the change of the dual objective function relative to * its value at teta = 0. * * On exit the routine also replaces the parameter slope with a new * value that corresponds to the new last break-point bp[num1]. */ static int CDECL fcmp(const void *v1, const void *v2) { const SPYBP *p1 = v1, *p2 = v2; if (p1->teta < p2->teta) return -1; else if (p1->teta > p2->teta) return +1; else return 0; } int spy_ls_select_bp(SPXLP *lp, const double trow[/*1+n-m*/], int nbp, SPYBP bp[/*1+n-m*/], int num, double *slope, double teta_lim) { int m = lp->m; int n = lp->n; double *l = lp->l; double *u = lp->u; int *head = lp->head; int j, k, t, num1; double teta, dz; xassert(0 <= num && num <= nbp && nbp <= n-m); /* select a new portion of break-points */ num1 = num; for (t = num+1; t <= nbp; t++) { if (bp[t].teta <= teta_lim) { /* move break-point to the beginning of the new portion */ num1++; j = bp[num1].j, teta = bp[num1].teta; bp[num1].j = bp[t].j, bp[num1].teta = bp[t].teta; bp[t].j = j, bp[t].teta = teta; } } /* sort new break-points bp[num+1], ..., bp[num1] by ascending * the ray parameter teta */ if (num1 - num > 1) qsort(&bp[num+1], num1 - num, sizeof(SPYBP), fcmp); /* calculate the dual objective change at the new break-points */ for (t = num+1; t <= num1; t++) { /* calculate the dual objective change relative to its value * at break-point bp[t-1] */ if (*slope == -DBL_MAX) dz = -DBL_MAX; else dz = (*slope) * (bp[t].teta - (t == 1 ? 0.0 : bp[t-1].teta)); /* calculate the dual objective change relative to its value * at teta = 0 */ if (dz == -DBL_MAX) bp[t].dz = -DBL_MAX; else bp[t].dz = (t == 1 ? 0.0 : bp[t-1].dz) + dz; /* calculate a new slope of the dual objective to the right of * the current break-point bp[t] */ if (*slope != -DBL_MAX) { j = bp[t].j; k = head[m+j]; /* x[k] = xN[j] */ if (l[k] == -DBL_MAX || u[k] == +DBL_MAX) *slope = -DBL_MAX; /* blocking break-point reached */ else { xassert(l[k] < u[k]); *slope -= fabs(trow[j]) * (u[k] - l[k]); } } } return num1; } /* eof */