/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; /* > \brief \b DGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DGEHD2 + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO ) INTEGER IHI, ILO, INFO, LDA, N DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) > \par Purpose: ============= > > \verbatim > > DGEHD2 reduces a real general matrix A to upper Hessenberg form H by > an orthogonal similarity transformation: Q**T * A * Q = H . > \endverbatim Arguments: ========== > \param[in] N > \verbatim > N is INTEGER > The order of the matrix A. N >= 0. > \endverbatim > > \param[in] ILO > \verbatim > ILO is INTEGER > \endverbatim > > \param[in] IHI > \verbatim > IHI is INTEGER > > It is assumed that A is already upper triangular in rows > and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally > set by a previous call to DGEBAL; otherwise they should be > set to 1 and N respectively. See Further Details. > 1 <= ILO <= IHI <= max(1,N). > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,N) > On entry, the n by n general matrix to be reduced. > On exit, the upper triangle and the first subdiagonal of A > are overwritten with the upper Hessenberg matrix H, and the > elements below the first subdiagonal, with the array TAU, > represent the orthogonal matrix Q as a product of elementary > reflectors. See Further Details. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. LDA >= max(1,N). > \endverbatim > > \param[out] TAU > \verbatim > TAU is DOUBLE PRECISION array, dimension (N-1) > The scalar factors of the elementary reflectors (see Further > Details). > \endverbatim > > \param[out] WORK > \verbatim > WORK is DOUBLE PRECISION array, dimension (N) > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit. > < 0: if INFO = -i, the i-th argument had an illegal value. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleGEcomputational > \par Further Details: ===================== > > \verbatim > > The matrix Q is represented as a product of (ihi-ilo) elementary > reflectors > > Q = H(ilo) H(ilo+1) . . . H(ihi-1). > > Each H(i) has the form > > H(i) = I - tau * v * v**T > > where tau is a real scalar, and v is a real vector with > v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on > exit in A(i+2:ihi,i), and tau in TAU(i). > > The contents of A are illustrated by the following example, with > n = 7, ilo = 2 and ihi = 6: > > on entry, on exit, > > ( a a a a a a a ) ( a a h h h h a ) > ( a a a a a a ) ( a h h h h a ) > ( a a a a a a ) ( h h h h h h ) > ( a a a a a a ) ( v2 h h h h h ) > ( a a a a a a ) ( v2 v3 h h h h ) > ( a a a a a a ) ( v2 v3 v4 h h h ) > ( a ) ( a ) > > where a denotes an element of the original matrix A, h denotes a > modified element of the upper Hessenberg matrix H, and vi denotes an > element of the vector defining H(i). > \endverbatim > ===================================================================== Subroutine */ int igraphdgehd2_(integer *n, integer *ilo, integer *ihi, doublereal *a, integer *lda, doublereal *tau, doublereal *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__; doublereal aii; extern /* Subroutine */ int igraphdlarf_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *), igraphdlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *), igraphxerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Test the input parameters Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } else if (*ilo < 1 || *ilo > max(1,*n)) { *info = -2; } else if (*ihi < min(*ilo,*n) || *ihi > *n) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DGEHD2", &i__1, (ftnlen)6); return 0; } i__1 = *ihi - 1; for (i__ = *ilo; i__ <= i__1; ++i__) { /* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */ i__2 = *ihi - i__; /* Computing MIN */ i__3 = i__ + 2; igraphdlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*n) + i__ * a_dim1], &c__1, &tau[i__]); aii = a[i__ + 1 + i__ * a_dim1]; a[i__ + 1 + i__ * a_dim1] = 1.; /* Apply H(i) to A(1:ihi,i+1:ihi) from the right */ i__2 = *ihi - i__; igraphdlarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[ i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1]); /* Apply H(i) to A(i+1:ihi,i+1:n) from the left */ i__2 = *ihi - i__; i__3 = *n - i__; igraphdlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[ i__], &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]); a[i__ + 1 + i__ * a_dim1] = aii; /* L10: */ } return 0; /* End of DGEHD2 */ } /* igraphdgehd2_ */