/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__3 = 3; static integer c__2 = 2; static integer c__65 = 65; static doublereal c_b25 = -1.; static doublereal c_b26 = 1.; /* > \brief \b DGEHRD =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DGEHRD + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) INTEGER IHI, ILO, INFO, LDA, LWORK, N DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) > \par Purpose: ============= > > \verbatim > > DGEHRD reduces a real general matrix A to upper Hessenberg form H by > an orthogonal similarity transformation: Q**T * A * Q = H . > \endverbatim Arguments: ========== > \param[in] N > \verbatim > N is INTEGER > The order of the matrix A. N >= 0. > \endverbatim > > \param[in] ILO > \verbatim > ILO is INTEGER > \endverbatim > > \param[in] IHI > \verbatim > IHI is INTEGER > > It is assumed that A is already upper triangular in rows > and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally > set by a previous call to DGEBAL; otherwise they should be > set to 1 and N respectively. See Further Details. > 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,N) > On entry, the N-by-N general matrix to be reduced. > On exit, the upper triangle and the first subdiagonal of A > are overwritten with the upper Hessenberg matrix H, and the > elements below the first subdiagonal, with the array TAU, > represent the orthogonal matrix Q as a product of elementary > reflectors. See Further Details. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. LDA >= max(1,N). > \endverbatim > > \param[out] TAU > \verbatim > TAU is DOUBLE PRECISION array, dimension (N-1) > The scalar factors of the elementary reflectors (see Further > Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to > zero. > \endverbatim > > \param[out] WORK > \verbatim > WORK is DOUBLE PRECISION array, dimension (LWORK) > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. > \endverbatim > > \param[in] LWORK > \verbatim > LWORK is INTEGER > The length of the array WORK. LWORK >= max(1,N). > For optimum performance LWORK >= N*NB, where NB is the > optimal blocksize. > > If LWORK = -1, then a workspace query is assumed; the routine > only calculates the optimal size of the WORK array, returns > this value as the first entry of the WORK array, and no error > message related to LWORK is issued by XERBLA. > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument had an illegal value. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date November 2011 > \ingroup doubleGEcomputational > \par Further Details: ===================== > > \verbatim > > The matrix Q is represented as a product of (ihi-ilo) elementary > reflectors > > Q = H(ilo) H(ilo+1) . . . H(ihi-1). > > Each H(i) has the form > > H(i) = I - tau * v * v**T > > where tau is a real scalar, and v is a real vector with > v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on > exit in A(i+2:ihi,i), and tau in TAU(i). > > The contents of A are illustrated by the following example, with > n = 7, ilo = 2 and ihi = 6: > > on entry, on exit, > > ( a a a a a a a ) ( a a h h h h a ) > ( a a a a a a ) ( a h h h h a ) > ( a a a a a a ) ( h h h h h h ) > ( a a a a a a ) ( v2 h h h h h ) > ( a a a a a a ) ( v2 v3 h h h h ) > ( a a a a a a ) ( v2 v3 v4 h h h ) > ( a ) ( a ) > > where a denotes an element of the original matrix A, h denotes a > modified element of the upper Hessenberg matrix H, and vi denotes an > element of the vector defining H(i). > > This file is a slight modification of LAPACK-3.0's DGEHRD > subroutine incorporating improvements proposed by Quintana-Orti and > Van de Geijn (2006). (See DLAHR2.) > \endverbatim > ===================================================================== Subroutine */ int igraphdgehrd_(integer *n, integer *ilo, integer *ihi, doublereal *a, integer *lda, doublereal *tau, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; /* Local variables */ integer i__, j; doublereal t[4160] /* was [65][64] */; integer ib; doublereal ei; integer nb, nh, nx, iws; extern /* Subroutine */ int igraphdgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); integer nbmin, iinfo; extern /* Subroutine */ int igraphdtrmm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), igraphdaxpy_( integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), igraphdgehd2_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), igraphdlahr2_( integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), igraphdlarfb_(char *, char *, char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), igraphxerbla_(char *, integer *, ftnlen); extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); integer ldwork, lwkopt; logical lquery; /* -- LAPACK computational routine (version 3.4.0) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- November 2011 ===================================================================== Test the input parameters Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; /* Computing MIN */ i__1 = 64, i__2 = igraphilaenv_(&c__1, "DGEHRD", " ", n, ilo, ihi, &c_n1, ( ftnlen)6, (ftnlen)1); nb = min(i__1,i__2); lwkopt = *n * nb; work[1] = (doublereal) lwkopt; lquery = *lwork == -1; if (*n < 0) { *info = -1; } else if (*ilo < 1 || *ilo > max(1,*n)) { *info = -2; } else if (*ihi < min(*ilo,*n) || *ihi > *n) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*lwork < max(1,*n) && ! lquery) { *info = -8; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DGEHRD", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero */ i__1 = *ilo - 1; for (i__ = 1; i__ <= i__1; ++i__) { tau[i__] = 0.; /* L10: */ } i__1 = *n - 1; for (i__ = max(1,*ihi); i__ <= i__1; ++i__) { tau[i__] = 0.; /* L20: */ } /* Quick return if possible */ nh = *ihi - *ilo + 1; if (nh <= 1) { work[1] = 1.; return 0; } /* Determine the block size Computing MIN */ i__1 = 64, i__2 = igraphilaenv_(&c__1, "DGEHRD", " ", n, ilo, ihi, &c_n1, ( ftnlen)6, (ftnlen)1); nb = min(i__1,i__2); nbmin = 2; iws = 1; if (nb > 1 && nb < nh) { /* Determine when to cross over from blocked to unblocked code (last block is always handled by unblocked code) Computing MAX */ i__1 = nb, i__2 = igraphilaenv_(&c__3, "DGEHRD", " ", n, ilo, ihi, &c_n1, ( ftnlen)6, (ftnlen)1); nx = max(i__1,i__2); if (nx < nh) { /* Determine if workspace is large enough for blocked code */ iws = *n * nb; if (*lwork < iws) { /* Not enough workspace to use optimal NB: determine the minimum value of NB, and reduce NB or force use of unblocked code Computing MAX */ i__1 = 2, i__2 = igraphilaenv_(&c__2, "DGEHRD", " ", n, ilo, ihi, & c_n1, (ftnlen)6, (ftnlen)1); nbmin = max(i__1,i__2); if (*lwork >= *n * nbmin) { nb = *lwork / *n; } else { nb = 1; } } } } ldwork = *n; if (nb < nbmin || nb >= nh) { /* Use unblocked code below */ i__ = *ilo; } else { /* Use blocked code */ i__1 = *ihi - 1 - nx; i__2 = nb; for (i__ = *ilo; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = nb, i__4 = *ihi - i__; ib = min(i__3,i__4); /* Reduce columns i:i+ib-1 to Hessenberg form, returning the matrices V and T of the block reflector H = I - V*T*V**T which performs the reduction, and also the matrix Y = A*V*T */ igraphdlahr2_(ihi, &i__, &ib, &a[i__ * a_dim1 + 1], lda, &tau[i__], t, & c__65, &work[1], &ldwork); /* Apply the block reflector H to A(1:ihi,i+ib:ihi) from the right, computing A := A - Y * V**T. V(i+ib,ib-1) must be set to 1 */ ei = a[i__ + ib + (i__ + ib - 1) * a_dim1]; a[i__ + ib + (i__ + ib - 1) * a_dim1] = 1.; i__3 = *ihi - i__ - ib + 1; igraphdgemm_("No transpose", "Transpose", ihi, &i__3, &ib, &c_b25, & work[1], &ldwork, &a[i__ + ib + i__ * a_dim1], lda, & c_b26, &a[(i__ + ib) * a_dim1 + 1], lda); a[i__ + ib + (i__ + ib - 1) * a_dim1] = ei; /* Apply the block reflector H to A(1:i,i+1:i+ib-1) from the right */ i__3 = ib - 1; igraphdtrmm_("Right", "Lower", "Transpose", "Unit", &i__, &i__3, &c_b26, &a[i__ + 1 + i__ * a_dim1], lda, &work[1], &ldwork); i__3 = ib - 2; for (j = 0; j <= i__3; ++j) { igraphdaxpy_(&i__, &c_b25, &work[ldwork * j + 1], &c__1, &a[(i__ + j + 1) * a_dim1 + 1], &c__1); /* L30: */ } /* Apply the block reflector H to A(i+1:ihi,i+ib:n) from the left */ i__3 = *ihi - i__; i__4 = *n - i__ - ib + 1; igraphdlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, & i__4, &ib, &a[i__ + 1 + i__ * a_dim1], lda, t, &c__65, &a[ i__ + 1 + (i__ + ib) * a_dim1], lda, &work[1], &ldwork); /* L40: */ } } /* Use unblocked code to reduce the rest of the matrix */ igraphdgehd2_(n, &i__, ihi, &a[a_offset], lda, &tau[1], &work[1], &iinfo); work[1] = (doublereal) iws; return 0; /* End of DGEHRD */ } /* igraphdgehrd_ */