/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DGEMM =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ Definition: =========== SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) DOUBLE PRECISION ALPHA,BETA INTEGER K,LDA,LDB,LDC,M,N CHARACTER TRANSA,TRANSB DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) > \par Purpose: ============= > > \verbatim > > DGEMM performs one of the matrix-matrix operations > > C := alpha*op( A )*op( B ) + beta*C, > > where op( X ) is one of > > op( X ) = X or op( X ) = X**T, > > alpha and beta are scalars, and A, B and C are matrices, with op( A ) > an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. > \endverbatim Arguments: ========== > \param[in] TRANSA > \verbatim > TRANSA is CHARACTER*1 > On entry, TRANSA specifies the form of op( A ) to be used in > the matrix multiplication as follows: > > TRANSA = 'N' or 'n', op( A ) = A. > > TRANSA = 'T' or 't', op( A ) = A**T. > > TRANSA = 'C' or 'c', op( A ) = A**T. > \endverbatim > > \param[in] TRANSB > \verbatim > TRANSB is CHARACTER*1 > On entry, TRANSB specifies the form of op( B ) to be used in > the matrix multiplication as follows: > > TRANSB = 'N' or 'n', op( B ) = B. > > TRANSB = 'T' or 't', op( B ) = B**T. > > TRANSB = 'C' or 'c', op( B ) = B**T. > \endverbatim > > \param[in] M > \verbatim > M is INTEGER > On entry, M specifies the number of rows of the matrix > op( A ) and of the matrix C. M must be at least zero. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > On entry, N specifies the number of columns of the matrix > op( B ) and the number of columns of the matrix C. N must be > at least zero. > \endverbatim > > \param[in] K > \verbatim > K is INTEGER > On entry, K specifies the number of columns of the matrix > op( A ) and the number of rows of the matrix op( B ). K must > be at least zero. > \endverbatim > > \param[in] ALPHA > \verbatim > ALPHA is DOUBLE PRECISION. > On entry, ALPHA specifies the scalar alpha. > \endverbatim > > \param[in] A > \verbatim > A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is > k when TRANSA = 'N' or 'n', and is m otherwise. > Before entry with TRANSA = 'N' or 'n', the leading m by k > part of the array A must contain the matrix A, otherwise > the leading k by m part of the array A must contain the > matrix A. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > On entry, LDA specifies the first dimension of A as declared > in the calling (sub) program. When TRANSA = 'N' or 'n' then > LDA must be at least max( 1, m ), otherwise LDA must be at > least max( 1, k ). > \endverbatim > > \param[in] B > \verbatim > B is DOUBLE PRECISION array, dimension ( LDB, kb ), where kb is > n when TRANSB = 'N' or 'n', and is k otherwise. > Before entry with TRANSB = 'N' or 'n', the leading k by n > part of the array B must contain the matrix B, otherwise > the leading n by k part of the array B must contain the > matrix B. > \endverbatim > > \param[in] LDB > \verbatim > LDB is INTEGER > On entry, LDB specifies the first dimension of B as declared > in the calling (sub) program. When TRANSB = 'N' or 'n' then > LDB must be at least max( 1, k ), otherwise LDB must be at > least max( 1, n ). > \endverbatim > > \param[in] BETA > \verbatim > BETA is DOUBLE PRECISION. > On entry, BETA specifies the scalar beta. When BETA is > supplied as zero then C need not be set on input. > \endverbatim > > \param[in,out] C > \verbatim > C is DOUBLE PRECISION array, dimension ( LDC, N ) > Before entry, the leading m by n part of the array C must > contain the matrix C, except when beta is zero, in which > case C need not be set on entry. > On exit, the array C is overwritten by the m by n matrix > ( alpha*op( A )*op( B ) + beta*C ). > \endverbatim > > \param[in] LDC > \verbatim > LDC is INTEGER > On entry, LDC specifies the first dimension of C as declared > in the calling (sub) program. LDC must be at least > max( 1, m ). > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date December 2016 > \ingroup double_blas_level3 > \par Further Details: ===================== > > \verbatim > > Level 3 Blas routine. > > -- Written on 8-February-1989. > Jack Dongarra, Argonne National Laboratory. > Iain Duff, AERE Harwell. > Jeremy Du Croz, Numerical Algorithms Group Ltd. > Sven Hammarling, Numerical Algorithms Group Ltd. > \endverbatim > ===================================================================== Subroutine */ int igraphdgemm_(char *transa, char *transb, integer *m, integer * n, integer *k, doublereal *alpha, doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *beta, doublereal *c__, integer *ldc) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, l, info; logical nota, notb; doublereal temp; integer ncola; extern logical igraphlsame_(char *, char *); integer nrowa, nrowb; extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen); /* -- Reference BLAS level3 routine (version 3.7.0) -- -- Reference BLAS is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- December 2016 ===================================================================== Set NOTA and NOTB as true if A and B respectively are not transposed and set NROWA, NCOLA and NROWB as the number of rows and columns of A and the number of rows of B respectively. Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; /* Function Body */ nota = igraphlsame_(transa, "N"); notb = igraphlsame_(transb, "N"); if (nota) { nrowa = *m; ncola = *k; } else { nrowa = *k; ncola = *m; } if (notb) { nrowb = *k; } else { nrowb = *n; } /* Test the input parameters. */ info = 0; if (! nota && ! igraphlsame_(transa, "C") && ! igraphlsame_( transa, "T")) { info = 1; } else if (! notb && ! igraphlsame_(transb, "C") && ! igraphlsame_(transb, "T")) { info = 2; } else if (*m < 0) { info = 3; } else if (*n < 0) { info = 4; } else if (*k < 0) { info = 5; } else if (*lda < max(1,nrowa)) { info = 8; } else if (*ldb < max(1,nrowb)) { info = 10; } else if (*ldc < max(1,*m)) { info = 13; } if (info != 0) { igraphxerbla_("DGEMM ", &info, (ftnlen)6); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) { return 0; } /* And if alpha.eq.zero. */ if (*alpha == 0.) { if (*beta == 0.) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = 0.; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; /* L30: */ } /* L40: */ } } return 0; } /* Start the operations. */ if (notb) { if (nota) { /* Form C := alpha*A*B + beta*C. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*beta == 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = 0.; /* L50: */ } } else if (*beta != 1.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; /* L60: */ } } i__2 = *k; for (l = 1; l <= i__2; ++l) { temp = *alpha * b[l + j * b_dim1]; i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { c__[i__ + j * c_dim1] += temp * a[i__ + l * a_dim1]; /* L70: */ } /* L80: */ } /* L90: */ } } else { /* Form C := alpha*A**T*B + beta*C */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp = 0.; i__3 = *k; for (l = 1; l <= i__3; ++l) { temp += a[l + i__ * a_dim1] * b[l + j * b_dim1]; /* L100: */ } if (*beta == 0.) { c__[i__ + j * c_dim1] = *alpha * temp; } else { c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ i__ + j * c_dim1]; } /* L110: */ } /* L120: */ } } } else { if (nota) { /* Form C := alpha*A*B**T + beta*C */ i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*beta == 0.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = 0.; /* L130: */ } } else if (*beta != 1.) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; /* L140: */ } } i__2 = *k; for (l = 1; l <= i__2; ++l) { temp = *alpha * b[j + l * b_dim1]; i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { c__[i__ + j * c_dim1] += temp * a[i__ + l * a_dim1]; /* L150: */ } /* L160: */ } /* L170: */ } } else { /* Form C := alpha*A**T*B**T + beta*C */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp = 0.; i__3 = *k; for (l = 1; l <= i__3; ++l) { temp += a[l + i__ * a_dim1] * b[j + l * b_dim1]; /* L180: */ } if (*beta == 0.) { c__[i__ + j * c_dim1] = *alpha * temp; } else { c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ i__ + j * c_dim1]; } /* L190: */ } /* L200: */ } } } return 0; /* End of DGEMM . */ } /* igraphdgemm_ */