/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; /* > \brief \b DGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorit hm. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DGEQR2 + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DGEQR2( M, N, A, LDA, TAU, WORK, INFO ) INTEGER INFO, LDA, M, N DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) > \par Purpose: ============= > > \verbatim > > DGEQR2 computes a QR factorization of a real m by n matrix A: > A = Q * R. > \endverbatim Arguments: ========== > \param[in] M > \verbatim > M is INTEGER > The number of rows of the matrix A. M >= 0. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The number of columns of the matrix A. N >= 0. > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,N) > On entry, the m by n matrix A. > On exit, the elements on and above the diagonal of the array > contain the min(m,n) by n upper trapezoidal matrix R (R is > upper triangular if m >= n); the elements below the diagonal, > with the array TAU, represent the orthogonal matrix Q as a > product of elementary reflectors (see Further Details). > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. LDA >= max(1,M). > \endverbatim > > \param[out] TAU > \verbatim > TAU is DOUBLE PRECISION array, dimension (min(M,N)) > The scalar factors of the elementary reflectors (see Further > Details). > \endverbatim > > \param[out] WORK > \verbatim > WORK is DOUBLE PRECISION array, dimension (N) > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument had an illegal value > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleGEcomputational > \par Further Details: ===================== > > \verbatim > > The matrix Q is represented as a product of elementary reflectors > > Q = H(1) H(2) . . . H(k), where k = min(m,n). > > Each H(i) has the form > > H(i) = I - tau * v * v**T > > where tau is a real scalar, and v is a real vector with > v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), > and tau in TAU(i). > \endverbatim > ===================================================================== Subroutine */ int igraphdgeqr2_(integer *m, integer *n, doublereal *a, integer * lda, doublereal *tau, doublereal *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, k; doublereal aii; extern /* Subroutine */ int igraphdlarf_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *), igraphdlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *), igraphxerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Test the input arguments Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DGEQR2", &i__1, (ftnlen)6); return 0; } k = min(*m,*n); i__1 = k; for (i__ = 1; i__ <= i__1; ++i__) { /* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */ i__2 = *m - i__ + 1; /* Computing MIN */ i__3 = i__ + 1; igraphdlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ * a_dim1] , &c__1, &tau[i__]); if (i__ < *n) { /* Apply H(i) to A(i:m,i+1:n) from the left */ aii = a[i__ + i__ * a_dim1]; a[i__ + i__ * a_dim1] = 1.; i__2 = *m - i__ + 1; i__3 = *n - i__; igraphdlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &tau[ i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]); a[i__ + i__ * a_dim1] = aii; } /* L10: */ } return 0; /* End of DGEQR2 */ } /* igraphdgeqr2_ */