/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DGER =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ Definition: =========== SUBROUTINE DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) DOUBLE PRECISION ALPHA INTEGER INCX,INCY,LDA,M,N DOUBLE PRECISION A(LDA,*),X(*),Y(*) > \par Purpose: ============= > > \verbatim > > DGER performs the rank 1 operation > > A := alpha*x*y**T + A, > > where alpha is a scalar, x is an m element vector, y is an n element > vector and A is an m by n matrix. > \endverbatim Arguments: ========== > \param[in] M > \verbatim > M is INTEGER > On entry, M specifies the number of rows of the matrix A. > M must be at least zero. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > On entry, N specifies the number of columns of the matrix A. > N must be at least zero. > \endverbatim > > \param[in] ALPHA > \verbatim > ALPHA is DOUBLE PRECISION. > On entry, ALPHA specifies the scalar alpha. > \endverbatim > > \param[in] X > \verbatim > X is DOUBLE PRECISION array, dimension at least > ( 1 + ( m - 1 )*abs( INCX ) ). > Before entry, the incremented array X must contain the m > element vector x. > \endverbatim > > \param[in] INCX > \verbatim > INCX is INTEGER > On entry, INCX specifies the increment for the elements of > X. INCX must not be zero. > \endverbatim > > \param[in] Y > \verbatim > Y is DOUBLE PRECISION array, dimension at least > ( 1 + ( n - 1 )*abs( INCY ) ). > Before entry, the incremented array Y must contain the n > element vector y. > \endverbatim > > \param[in] INCY > \verbatim > INCY is INTEGER > On entry, INCY specifies the increment for the elements of > Y. INCY must not be zero. > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension ( LDA, N ) > Before entry, the leading m by n part of the array A must > contain the matrix of coefficients. On exit, A is > overwritten by the updated matrix. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > On entry, LDA specifies the first dimension of A as declared > in the calling (sub) program. LDA must be at least > max( 1, m ). > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date December 2016 > \ingroup double_blas_level2 > \par Further Details: ===================== > > \verbatim > > Level 2 Blas routine. > > -- Written on 22-October-1986. > Jack Dongarra, Argonne National Lab. > Jeremy Du Croz, Nag Central Office. > Sven Hammarling, Nag Central Office. > Richard Hanson, Sandia National Labs. > \endverbatim > ===================================================================== Subroutine */ int igraphdger_(integer *m, integer *n, doublereal *alpha, doublereal *x, integer *incx, doublereal *y, integer *incy, doublereal *a, integer *lda) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ integer i__, j, ix, jy, kx, info; doublereal temp; extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen); /* -- Reference BLAS level2 routine (version 3.7.0) -- -- Reference BLAS is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- December 2016 ===================================================================== Test the input parameters. Parameter adjustments */ --x; --y; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ info = 0; if (*m < 0) { info = 1; } else if (*n < 0) { info = 2; } else if (*incx == 0) { info = 5; } else if (*incy == 0) { info = 7; } else if (*lda < max(1,*m)) { info = 9; } if (info != 0) { igraphxerbla_("DGER ", &info, (ftnlen)6); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0 || *alpha == 0.) { return 0; } /* Start the operations. In this version the elements of A are accessed sequentially with one pass through A. */ if (*incy > 0) { jy = 1; } else { jy = 1 - (*n - 1) * *incy; } if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (y[jy] != 0.) { temp = *alpha * y[jy]; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] += x[i__] * temp; /* L10: */ } } jy += *incy; /* L20: */ } } else { if (*incx > 0) { kx = 1; } else { kx = 1 - (*m - 1) * *incx; } i__1 = *n; for (j = 1; j <= i__1; ++j) { if (y[jy] != 0.) { temp = *alpha * y[jy]; ix = kx; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] += x[ix] * temp; ix += *incx; /* L30: */ } } jy += *incy; /* L40: */ } } return 0; /* End of DGER . */ } /* igraphdger_ */